| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0snmpt.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | sge0snmpt.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 3 |  | sge0snmpt.b | ⊢ ( 𝑘  =  𝐴  →  𝐵  =  𝐶 ) | 
						
							| 4 |  | elsni | ⊢ ( 𝑘  ∈  { 𝐴 }  →  𝑘  =  𝐴 ) | 
						
							| 5 | 4 3 | syl | ⊢ ( 𝑘  ∈  { 𝐴 }  →  𝐵  =  𝐶 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝐴 } )  →  𝐵  =  𝐶 ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝐴 } )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 8 | 6 7 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝐴 } )  →  𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑘  ∈  { 𝐴 }  ↦  𝐵 )  =  ( 𝑘  ∈  { 𝐴 }  ↦  𝐵 ) | 
						
							| 10 | 8 9 | fmptd | ⊢ ( 𝜑  →  ( 𝑘  ∈  { 𝐴 }  ↦  𝐵 ) : { 𝐴 } ⟶ ( 0 [,] +∞ ) ) | 
						
							| 11 | 1 10 | sge0sn | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  { 𝐴 }  ↦  𝐵 ) )  =  ( ( 𝑘  ∈  { 𝐴 }  ↦  𝐵 ) ‘ 𝐴 ) ) | 
						
							| 12 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑘  ∈  { 𝐴 }  ↦  𝐵 )  =  ( 𝑘  ∈  { 𝐴 }  ↦  𝐵 ) ) | 
						
							| 13 | 3 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐴 )  →  𝐵  =  𝐶 ) | 
						
							| 14 |  | snidg | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 15 | 1 14 | syl | ⊢ ( 𝜑  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 16 | 12 13 15 2 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  { 𝐴 }  ↦  𝐵 ) ‘ 𝐴 )  =  𝐶 ) | 
						
							| 17 | 11 16 | eqtrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  { 𝐴 }  ↦  𝐵 ) )  =  𝐶 ) |