Step |
Hyp |
Ref |
Expression |
1 |
|
sge0sn.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
sge0sn.2 |
⊢ ( 𝜑 → 𝐹 : { 𝐴 } ⟶ ( 0 [,] +∞ ) ) |
3 |
|
snex |
⊢ { 𝐴 } ∈ V |
4 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = +∞ ) → { 𝐴 } ∈ V ) |
5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = +∞ ) → 𝐹 : { 𝐴 } ⟶ ( 0 [,] +∞ ) ) |
6 |
|
id |
⊢ ( ( 𝐹 ‘ 𝐴 ) = +∞ → ( 𝐹 ‘ 𝐴 ) = +∞ ) |
7 |
6
|
eqcomd |
⊢ ( ( 𝐹 ‘ 𝐴 ) = +∞ → +∞ = ( 𝐹 ‘ 𝐴 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = +∞ ) → +∞ = ( 𝐹 ‘ 𝐴 ) ) |
9 |
2
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = +∞ ) → Fun 𝐹 ) |
11 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
13 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = { 𝐴 } ) |
14 |
13
|
eqcomd |
⊢ ( 𝜑 → { 𝐴 } = dom 𝐹 ) |
15 |
12 14
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝐹 ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = +∞ ) → 𝐴 ∈ dom 𝐹 ) |
17 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |
18 |
10 16 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = +∞ ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |
19 |
8 18
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = +∞ ) → +∞ ∈ ran 𝐹 ) |
20 |
4 5 19
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) = +∞ ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = +∞ ) → ( 𝐹 ‘ 𝐴 ) = +∞ ) |
22 |
20 21
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) = ( 𝐹 ‘ 𝐴 ) ) |
23 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → { 𝐴 } ∈ V ) |
24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → 𝐹 : { 𝐴 } ⟶ ( 0 [,] +∞ ) ) |
25 |
|
elsni |
⊢ ( +∞ ∈ { ( 𝐹 ‘ 𝐴 ) } → +∞ = ( 𝐹 ‘ 𝐴 ) ) |
26 |
25
|
eqcomd |
⊢ ( +∞ ∈ { ( 𝐹 ‘ 𝐴 ) } → ( 𝐹 ‘ 𝐴 ) = +∞ ) |
27 |
26
|
con3i |
⊢ ( ¬ ( 𝐹 ‘ 𝐴 ) = +∞ → ¬ +∞ ∈ { ( 𝐹 ‘ 𝐴 ) } ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → ¬ +∞ ∈ { ( 𝐹 ‘ 𝐴 ) } ) |
29 |
1 2
|
rnsnf |
⊢ ( 𝜑 → ran 𝐹 = { ( 𝐹 ‘ 𝐴 ) } ) |
30 |
29
|
eqcomd |
⊢ ( 𝜑 → { ( 𝐹 ‘ 𝐴 ) } = ran 𝐹 ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → { ( 𝐹 ‘ 𝐴 ) } = ran 𝐹 ) |
32 |
28 31
|
neleqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → ¬ +∞ ∈ ran 𝐹 ) |
33 |
24 32
|
fge0iccico |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → 𝐹 : { 𝐴 } ⟶ ( 0 [,) +∞ ) ) |
34 |
23 33
|
sge0reval |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 { 𝐴 } ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
35 |
|
sum0 |
⊢ Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) = 0 |
36 |
35
|
eqcomi |
⊢ 0 = Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) |
37 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → 0 = Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) ) |
38 |
|
nfcvd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → Ⅎ 𝑦 ( 𝐹 ‘ 𝐴 ) ) |
39 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) |
40 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
41 |
40
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) ∧ 𝑦 = 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
42 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → 𝐴 ∈ 𝑉 ) |
43 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
44 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
45 |
43 44
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
46 |
42 11
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → 𝐴 ∈ { 𝐴 } ) |
47 |
33 46
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,) +∞ ) ) |
48 |
45 47
|
sselid |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
49 |
38 39 41 42 48
|
sumsnd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
50 |
49
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → ( 𝐹 ‘ 𝐴 ) = Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) ) |
51 |
37 50
|
preq12d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → { 0 , ( 𝐹 ‘ 𝐴 ) } = { Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) } ) |
52 |
51
|
supeq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → sup ( { 0 , ( 𝐹 ‘ 𝐴 ) } , ℝ* , < ) = sup ( { Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) } , ℝ* , < ) ) |
53 |
|
xrltso |
⊢ < Or ℝ* |
54 |
53
|
a1i |
⊢ ( 𝜑 → < Or ℝ* ) |
55 |
|
0xr |
⊢ 0 ∈ ℝ* |
56 |
55
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
57 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
58 |
2 12
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
59 |
57 58
|
sselid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
60 |
|
suppr |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → sup ( { 0 , ( 𝐹 ‘ 𝐴 ) } , ℝ* , < ) = if ( ( 𝐹 ‘ 𝐴 ) < 0 , 0 , ( 𝐹 ‘ 𝐴 ) ) ) |
61 |
54 56 59 60
|
syl3anc |
⊢ ( 𝜑 → sup ( { 0 , ( 𝐹 ‘ 𝐴 ) } , ℝ* , < ) = if ( ( 𝐹 ‘ 𝐴 ) < 0 , 0 , ( 𝐹 ‘ 𝐴 ) ) ) |
62 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
63 |
62
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
64 |
56 63 58
|
3jca |
⊢ ( 𝜑 → ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) ) |
65 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
66 |
64 65
|
syl |
⊢ ( 𝜑 → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
67 |
56 59
|
xrlenltd |
⊢ ( 𝜑 → ( 0 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ¬ ( 𝐹 ‘ 𝐴 ) < 0 ) ) |
68 |
66 67
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝐴 ) < 0 ) |
69 |
68
|
iffalsed |
⊢ ( 𝜑 → if ( ( 𝐹 ‘ 𝐴 ) < 0 , 0 , ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
70 |
61 69
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = sup ( { 0 , ( 𝐹 ‘ 𝐴 ) } , ℝ* , < ) ) |
71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → ( 𝐹 ‘ 𝐴 ) = sup ( { 0 , ( 𝐹 ‘ 𝐴 ) } , ℝ* , < ) ) |
72 |
|
pwsn |
⊢ 𝒫 { 𝐴 } = { ∅ , { 𝐴 } } |
73 |
72
|
ineq1i |
⊢ ( 𝒫 { 𝐴 } ∩ Fin ) = ( { ∅ , { 𝐴 } } ∩ Fin ) |
74 |
|
0fin |
⊢ ∅ ∈ Fin |
75 |
|
snfi |
⊢ { 𝐴 } ∈ Fin |
76 |
|
prssi |
⊢ ( ( ∅ ∈ Fin ∧ { 𝐴 } ∈ Fin ) → { ∅ , { 𝐴 } } ⊆ Fin ) |
77 |
74 75 76
|
mp2an |
⊢ { ∅ , { 𝐴 } } ⊆ Fin |
78 |
|
df-ss |
⊢ ( { ∅ , { 𝐴 } } ⊆ Fin ↔ ( { ∅ , { 𝐴 } } ∩ Fin ) = { ∅ , { 𝐴 } } ) |
79 |
78
|
biimpi |
⊢ ( { ∅ , { 𝐴 } } ⊆ Fin → ( { ∅ , { 𝐴 } } ∩ Fin ) = { ∅ , { 𝐴 } } ) |
80 |
77 79
|
ax-mp |
⊢ ( { ∅ , { 𝐴 } } ∩ Fin ) = { ∅ , { 𝐴 } } |
81 |
73 80
|
eqtri |
⊢ ( 𝒫 { 𝐴 } ∩ Fin ) = { ∅ , { 𝐴 } } |
82 |
|
mpteq1 |
⊢ ( ( 𝒫 { 𝐴 } ∩ Fin ) = { ∅ , { 𝐴 } } → ( 𝑥 ∈ ( 𝒫 { 𝐴 } ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ∈ { ∅ , { 𝐴 } } ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
83 |
81 82
|
ax-mp |
⊢ ( 𝑥 ∈ ( 𝒫 { 𝐴 } ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ∈ { ∅ , { 𝐴 } } ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
84 |
|
0ex |
⊢ ∅ ∈ V |
85 |
84
|
a1i |
⊢ ( ⊤ → ∅ ∈ V ) |
86 |
3
|
a1i |
⊢ ( ⊤ → { 𝐴 } ∈ V ) |
87 |
|
sumex |
⊢ Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) ∈ V |
88 |
87
|
a1i |
⊢ ( ⊤ → Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) ∈ V ) |
89 |
|
sumex |
⊢ Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) ∈ V |
90 |
89
|
a1i |
⊢ ( ⊤ → Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) ∈ V ) |
91 |
|
sumeq1 |
⊢ ( 𝑥 = ∅ → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) ) |
92 |
91
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 = ∅ ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) ) |
93 |
|
sumeq1 |
⊢ ( 𝑥 = { 𝐴 } → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) ) |
94 |
93
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 = { 𝐴 } ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) ) |
95 |
85 86 88 90 92 94
|
fmptpr |
⊢ ( ⊤ → { 〈 ∅ , Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) 〉 , 〈 { 𝐴 } , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) 〉 } = ( 𝑥 ∈ { ∅ , { 𝐴 } } ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
96 |
95
|
mptru |
⊢ { 〈 ∅ , Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) 〉 , 〈 { 𝐴 } , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) 〉 } = ( 𝑥 ∈ { ∅ , { 𝐴 } } ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
97 |
96
|
eqcomi |
⊢ ( 𝑥 ∈ { ∅ , { 𝐴 } } ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = { 〈 ∅ , Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) 〉 , 〈 { 𝐴 } , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) 〉 } |
98 |
83 97
|
eqtri |
⊢ ( 𝑥 ∈ ( 𝒫 { 𝐴 } ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = { 〈 ∅ , Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) 〉 , 〈 { 𝐴 } , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) 〉 } |
99 |
98
|
rneqi |
⊢ ran ( 𝑥 ∈ ( 𝒫 { 𝐴 } ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = ran { 〈 ∅ , Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) 〉 , 〈 { 𝐴 } , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) 〉 } |
100 |
|
rnpropg |
⊢ ( ( ∅ ∈ V ∧ { 𝐴 } ∈ V ) → ran { 〈 ∅ , Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) 〉 , 〈 { 𝐴 } , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) 〉 } = { Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) } ) |
101 |
84 3 100
|
mp2an |
⊢ ran { 〈 ∅ , Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) 〉 , 〈 { 𝐴 } , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) 〉 } = { Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) } |
102 |
99 101
|
eqtri |
⊢ ran ( 𝑥 ∈ ( 𝒫 { 𝐴 } ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = { Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) } |
103 |
102
|
supeq1i |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 { 𝐴 } ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) = sup ( { Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) } , ℝ* , < ) |
104 |
103
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → sup ( ran ( 𝑥 ∈ ( 𝒫 { 𝐴 } ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) = sup ( { Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) , Σ 𝑦 ∈ { 𝐴 } ( 𝐹 ‘ 𝑦 ) } , ℝ* , < ) ) |
105 |
52 71 104
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → ( 𝐹 ‘ 𝐴 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 { 𝐴 } ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
106 |
34 105
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) = ( 𝐹 ‘ 𝐴 ) ) |
107 |
22 106
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = ( 𝐹 ‘ 𝐴 ) ) |