| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0reval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 2 |
|
sge0reval.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
| 3 |
2
|
fge0icoicc |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 4 |
1 3
|
sge0vald |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = if ( +∞ ∈ ran 𝐹 , +∞ , sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) ) |
| 5 |
2
|
fge0npnf |
⊢ ( 𝜑 → ¬ +∞ ∈ ran 𝐹 ) |
| 6 |
5
|
iffalsed |
⊢ ( 𝜑 → if ( +∞ ∈ ran 𝐹 , +∞ , sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
| 7 |
4 6
|
eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |