Metamath Proof Explorer


Theorem sge0reval

Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0reval.x ( 𝜑𝑋𝑉 )
sge0reval.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) )
Assertion sge0reval ( 𝜑 → ( Σ^𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 sge0reval.x ( 𝜑𝑋𝑉 )
2 sge0reval.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) )
3 2 fge0icoicc ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
4 1 3 sge0vald ( 𝜑 → ( Σ^𝐹 ) = if ( +∞ ∈ ran 𝐹 , +∞ , sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) ) )
5 2 fge0npnf ( 𝜑 → ¬ +∞ ∈ ran 𝐹 )
6 5 iffalsed ( 𝜑 → if ( +∞ ∈ ran 𝐹 , +∞ , sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) )
7 4 6 eqtrd ( 𝜑 → ( Σ^𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) )