Metamath Proof Explorer


Theorem sge0pnfval

Description: If a term in the sum of nonnegative extended reals is +oo , then the value of the sum is +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0pnfval.x ( 𝜑𝑋𝑉 )
sge0pnfval.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
sge0pnfval.pnf ( 𝜑 → +∞ ∈ ran 𝐹 )
Assertion sge0pnfval ( 𝜑 → ( Σ^𝐹 ) = +∞ )

Proof

Step Hyp Ref Expression
1 sge0pnfval.x ( 𝜑𝑋𝑉 )
2 sge0pnfval.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
3 sge0pnfval.pnf ( 𝜑 → +∞ ∈ ran 𝐹 )
4 1 2 sge0vald ( 𝜑 → ( Σ^𝐹 ) = if ( +∞ ∈ ran 𝐹 , +∞ , sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) ) )
5 3 iftrued ( 𝜑 → if ( +∞ ∈ ran 𝐹 , +∞ , sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) ) = +∞ )
6 4 5 eqtrd ( 𝜑 → ( Σ^𝐹 ) = +∞ )