Description: If a term in the sum of nonnegative extended reals is +oo , then the value of the sum is +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sge0pnfval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| sge0pnfval.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | ||
| sge0pnfval.pnf | ⊢ ( 𝜑 → +∞ ∈ ran 𝐹 ) | ||
| Assertion | sge0pnfval | ⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0pnfval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 2 | sge0pnfval.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | |
| 3 | sge0pnfval.pnf | ⊢ ( 𝜑 → +∞ ∈ ran 𝐹 ) | |
| 4 | 1 2 | sge0vald | ⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = if ( +∞ ∈ ran 𝐹 , +∞ , sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) ) |
| 5 | 3 | iftrued | ⊢ ( 𝜑 → if ( +∞ ∈ ran 𝐹 , +∞ , sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) = +∞ ) |
| 6 | 4 5 | eqtrd | ⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = +∞ ) |