Metamath Proof Explorer


Theorem sge0pnfval

Description: If a term in the sum of nonnegative extended reals is +oo , then the value of the sum is +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0pnfval.x
|- ( ph -> X e. V )
sge0pnfval.f
|- ( ph -> F : X --> ( 0 [,] +oo ) )
sge0pnfval.pnf
|- ( ph -> +oo e. ran F )
Assertion sge0pnfval
|- ( ph -> ( sum^ ` F ) = +oo )

Proof

Step Hyp Ref Expression
1 sge0pnfval.x
 |-  ( ph -> X e. V )
2 sge0pnfval.f
 |-  ( ph -> F : X --> ( 0 [,] +oo ) )
3 sge0pnfval.pnf
 |-  ( ph -> +oo e. ran F )
4 1 2 sge0vald
 |-  ( ph -> ( sum^ ` F ) = if ( +oo e. ran F , +oo , sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) )
5 3 iftrued
 |-  ( ph -> if ( +oo e. ran F , +oo , sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) = +oo )
6 4 5 eqtrd
 |-  ( ph -> ( sum^ ` F ) = +oo )