Description: If a term in the sum of nonnegative extended reals is +oo , then the value of the sum is +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0pnfval.x | |- ( ph -> X e. V ) |
|
sge0pnfval.f | |- ( ph -> F : X --> ( 0 [,] +oo ) ) |
||
sge0pnfval.pnf | |- ( ph -> +oo e. ran F ) |
||
Assertion | sge0pnfval | |- ( ph -> ( sum^ ` F ) = +oo ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0pnfval.x | |- ( ph -> X e. V ) |
|
2 | sge0pnfval.f | |- ( ph -> F : X --> ( 0 [,] +oo ) ) |
|
3 | sge0pnfval.pnf | |- ( ph -> +oo e. ran F ) |
|
4 | 1 2 | sge0vald | |- ( ph -> ( sum^ ` F ) = if ( +oo e. ran F , +oo , sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) ) |
5 | 3 | iftrued | |- ( ph -> if ( +oo e. ran F , +oo , sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) = +oo ) |
6 | 4 5 | eqtrd | |- ( ph -> ( sum^ ` F ) = +oo ) |