Metamath Proof Explorer


Theorem sge0vald

Description: The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0vald.x
|- ( ph -> X e. V )
sge0vald.f
|- ( ph -> F : X --> ( 0 [,] +oo ) )
Assertion sge0vald
|- ( ph -> ( sum^ ` F ) = if ( +oo e. ran F , +oo , sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) )

Proof

Step Hyp Ref Expression
1 sge0vald.x
 |-  ( ph -> X e. V )
2 sge0vald.f
 |-  ( ph -> F : X --> ( 0 [,] +oo ) )
3 sge0val
 |-  ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> ( sum^ ` F ) = if ( +oo e. ran F , +oo , sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( sum^ ` F ) = if ( +oo e. ran F , +oo , sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) )