Metamath Proof Explorer


Theorem fge0iccico

Description: A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fge0iccico.f
|- ( ph -> F : X --> ( 0 [,] +oo ) )
fge0iccico.re
|- ( ph -> -. +oo e. ran F )
Assertion fge0iccico
|- ( ph -> F : X --> ( 0 [,) +oo ) )

Proof

Step Hyp Ref Expression
1 fge0iccico.f
 |-  ( ph -> F : X --> ( 0 [,] +oo ) )
2 fge0iccico.re
 |-  ( ph -> -. +oo e. ran F )
3 1 ffnd
 |-  ( ph -> F Fn X )
4 0xr
 |-  0 e. RR*
5 4 a1i
 |-  ( ( ph /\ x e. X ) -> 0 e. RR* )
6 pnfxr
 |-  +oo e. RR*
7 6 a1i
 |-  ( ( ph /\ x e. X ) -> +oo e. RR* )
8 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
9 1 ffvelrnda
 |-  ( ( ph /\ x e. X ) -> ( F ` x ) e. ( 0 [,] +oo ) )
10 8 9 sseldi
 |-  ( ( ph /\ x e. X ) -> ( F ` x ) e. RR* )
11 iccgelb
 |-  ( ( 0 e. RR* /\ +oo e. RR* /\ ( F ` x ) e. ( 0 [,] +oo ) ) -> 0 <_ ( F ` x ) )
12 5 7 9 11 syl3anc
 |-  ( ( ph /\ x e. X ) -> 0 <_ ( F ` x ) )
13 10 adantr
 |-  ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> ( F ` x ) e. RR* )
14 simpr
 |-  ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> -. ( F ` x ) < +oo )
15 6 a1i
 |-  ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> +oo e. RR* )
16 15 13 xrlenltd
 |-  ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> ( +oo <_ ( F ` x ) <-> -. ( F ` x ) < +oo ) )
17 14 16 mpbird
 |-  ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> +oo <_ ( F ` x ) )
18 13 17 xrgepnfd
 |-  ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> ( F ` x ) = +oo )
19 18 eqcomd
 |-  ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> +oo = ( F ` x ) )
20 1 ffund
 |-  ( ph -> Fun F )
21 20 adantr
 |-  ( ( ph /\ x e. X ) -> Fun F )
22 simpr
 |-  ( ( ph /\ x e. X ) -> x e. X )
23 fdm
 |-  ( F : X --> ( 0 [,] +oo ) -> dom F = X )
24 23 eqcomd
 |-  ( F : X --> ( 0 [,] +oo ) -> X = dom F )
25 1 24 syl
 |-  ( ph -> X = dom F )
26 25 adantr
 |-  ( ( ph /\ x e. X ) -> X = dom F )
27 22 26 eleqtrd
 |-  ( ( ph /\ x e. X ) -> x e. dom F )
28 fvelrn
 |-  ( ( Fun F /\ x e. dom F ) -> ( F ` x ) e. ran F )
29 21 27 28 syl2anc
 |-  ( ( ph /\ x e. X ) -> ( F ` x ) e. ran F )
30 29 adantr
 |-  ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> ( F ` x ) e. ran F )
31 19 30 eqeltrd
 |-  ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> +oo e. ran F )
32 2 ad2antrr
 |-  ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> -. +oo e. ran F )
33 31 32 condan
 |-  ( ( ph /\ x e. X ) -> ( F ` x ) < +oo )
34 5 7 10 12 33 elicod
 |-  ( ( ph /\ x e. X ) -> ( F ` x ) e. ( 0 [,) +oo ) )
35 34 ralrimiva
 |-  ( ph -> A. x e. X ( F ` x ) e. ( 0 [,) +oo ) )
36 3 35 jca
 |-  ( ph -> ( F Fn X /\ A. x e. X ( F ` x ) e. ( 0 [,) +oo ) ) )
37 ffnfv
 |-  ( F : X --> ( 0 [,) +oo ) <-> ( F Fn X /\ A. x e. X ( F ` x ) e. ( 0 [,) +oo ) ) )
38 36 37 sylibr
 |-  ( ph -> F : X --> ( 0 [,) +oo ) )