| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fge0iccico.f |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
| 2 |
|
fge0iccico.re |
|- ( ph -> -. +oo e. ran F ) |
| 3 |
1
|
ffnd |
|- ( ph -> F Fn X ) |
| 4 |
|
0xr |
|- 0 e. RR* |
| 5 |
4
|
a1i |
|- ( ( ph /\ x e. X ) -> 0 e. RR* ) |
| 6 |
|
pnfxr |
|- +oo e. RR* |
| 7 |
6
|
a1i |
|- ( ( ph /\ x e. X ) -> +oo e. RR* ) |
| 8 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 9 |
1
|
ffvelcdmda |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. ( 0 [,] +oo ) ) |
| 10 |
8 9
|
sselid |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. RR* ) |
| 11 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( F ` x ) e. ( 0 [,] +oo ) ) -> 0 <_ ( F ` x ) ) |
| 12 |
5 7 9 11
|
syl3anc |
|- ( ( ph /\ x e. X ) -> 0 <_ ( F ` x ) ) |
| 13 |
10
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> ( F ` x ) e. RR* ) |
| 14 |
|
simpr |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> -. ( F ` x ) < +oo ) |
| 15 |
6
|
a1i |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> +oo e. RR* ) |
| 16 |
15 13
|
xrlenltd |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> ( +oo <_ ( F ` x ) <-> -. ( F ` x ) < +oo ) ) |
| 17 |
14 16
|
mpbird |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> +oo <_ ( F ` x ) ) |
| 18 |
13 17
|
xrgepnfd |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> ( F ` x ) = +oo ) |
| 19 |
18
|
eqcomd |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> +oo = ( F ` x ) ) |
| 20 |
1
|
ffund |
|- ( ph -> Fun F ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ x e. X ) -> Fun F ) |
| 22 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
| 23 |
|
fdm |
|- ( F : X --> ( 0 [,] +oo ) -> dom F = X ) |
| 24 |
23
|
eqcomd |
|- ( F : X --> ( 0 [,] +oo ) -> X = dom F ) |
| 25 |
1 24
|
syl |
|- ( ph -> X = dom F ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ x e. X ) -> X = dom F ) |
| 27 |
22 26
|
eleqtrd |
|- ( ( ph /\ x e. X ) -> x e. dom F ) |
| 28 |
|
fvelrn |
|- ( ( Fun F /\ x e. dom F ) -> ( F ` x ) e. ran F ) |
| 29 |
21 27 28
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. ran F ) |
| 30 |
29
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> ( F ` x ) e. ran F ) |
| 31 |
19 30
|
eqeltrd |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> +oo e. ran F ) |
| 32 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> -. +oo e. ran F ) |
| 33 |
31 32
|
condan |
|- ( ( ph /\ x e. X ) -> ( F ` x ) < +oo ) |
| 34 |
5 7 10 12 33
|
elicod |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
| 35 |
34
|
ralrimiva |
|- ( ph -> A. x e. X ( F ` x ) e. ( 0 [,) +oo ) ) |
| 36 |
3 35
|
jca |
|- ( ph -> ( F Fn X /\ A. x e. X ( F ` x ) e. ( 0 [,) +oo ) ) ) |
| 37 |
|
ffnfv |
|- ( F : X --> ( 0 [,) +oo ) <-> ( F Fn X /\ A. x e. X ( F ` x ) e. ( 0 [,) +oo ) ) ) |
| 38 |
36 37
|
sylibr |
|- ( ph -> F : X --> ( 0 [,) +oo ) ) |