Step |
Hyp |
Ref |
Expression |
1 |
|
fge0iccico.f |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
2 |
|
fge0iccico.re |
|- ( ph -> -. +oo e. ran F ) |
3 |
1
|
ffnd |
|- ( ph -> F Fn X ) |
4 |
|
0xr |
|- 0 e. RR* |
5 |
4
|
a1i |
|- ( ( ph /\ x e. X ) -> 0 e. RR* ) |
6 |
|
pnfxr |
|- +oo e. RR* |
7 |
6
|
a1i |
|- ( ( ph /\ x e. X ) -> +oo e. RR* ) |
8 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
9 |
1
|
ffvelrnda |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. ( 0 [,] +oo ) ) |
10 |
8 9
|
sselid |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. RR* ) |
11 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( F ` x ) e. ( 0 [,] +oo ) ) -> 0 <_ ( F ` x ) ) |
12 |
5 7 9 11
|
syl3anc |
|- ( ( ph /\ x e. X ) -> 0 <_ ( F ` x ) ) |
13 |
10
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> ( F ` x ) e. RR* ) |
14 |
|
simpr |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> -. ( F ` x ) < +oo ) |
15 |
6
|
a1i |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> +oo e. RR* ) |
16 |
15 13
|
xrlenltd |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> ( +oo <_ ( F ` x ) <-> -. ( F ` x ) < +oo ) ) |
17 |
14 16
|
mpbird |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> +oo <_ ( F ` x ) ) |
18 |
13 17
|
xrgepnfd |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> ( F ` x ) = +oo ) |
19 |
18
|
eqcomd |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> +oo = ( F ` x ) ) |
20 |
1
|
ffund |
|- ( ph -> Fun F ) |
21 |
20
|
adantr |
|- ( ( ph /\ x e. X ) -> Fun F ) |
22 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
23 |
|
fdm |
|- ( F : X --> ( 0 [,] +oo ) -> dom F = X ) |
24 |
23
|
eqcomd |
|- ( F : X --> ( 0 [,] +oo ) -> X = dom F ) |
25 |
1 24
|
syl |
|- ( ph -> X = dom F ) |
26 |
25
|
adantr |
|- ( ( ph /\ x e. X ) -> X = dom F ) |
27 |
22 26
|
eleqtrd |
|- ( ( ph /\ x e. X ) -> x e. dom F ) |
28 |
|
fvelrn |
|- ( ( Fun F /\ x e. dom F ) -> ( F ` x ) e. ran F ) |
29 |
21 27 28
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. ran F ) |
30 |
29
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> ( F ` x ) e. ran F ) |
31 |
19 30
|
eqeltrd |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> +oo e. ran F ) |
32 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ -. ( F ` x ) < +oo ) -> -. +oo e. ran F ) |
33 |
31 32
|
condan |
|- ( ( ph /\ x e. X ) -> ( F ` x ) < +oo ) |
34 |
5 7 10 12 33
|
elicod |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
35 |
34
|
ralrimiva |
|- ( ph -> A. x e. X ( F ` x ) e. ( 0 [,) +oo ) ) |
36 |
3 35
|
jca |
|- ( ph -> ( F Fn X /\ A. x e. X ( F ` x ) e. ( 0 [,) +oo ) ) ) |
37 |
|
ffnfv |
|- ( F : X --> ( 0 [,) +oo ) <-> ( F Fn X /\ A. x e. X ( F ` x ) e. ( 0 [,) +oo ) ) ) |
38 |
36 37
|
sylibr |
|- ( ph -> F : X --> ( 0 [,) +oo ) ) |