| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fge0iccico.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 2 |
|
fge0iccico.re |
⊢ ( 𝜑 → ¬ +∞ ∈ ran 𝐹 ) |
| 3 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 4 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 5 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ ℝ* ) |
| 6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 7 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → +∞ ∈ ℝ* ) |
| 8 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 9 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 10 |
8 9
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 11 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 12 |
5 7 9 11
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 13 |
10
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < +∞ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < +∞ ) → ¬ ( 𝐹 ‘ 𝑥 ) < +∞ ) |
| 15 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < +∞ ) → +∞ ∈ ℝ* ) |
| 16 |
15 13
|
xrlenltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < +∞ ) → ( +∞ ≤ ( 𝐹 ‘ 𝑥 ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) < +∞ ) ) |
| 17 |
14 16
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < +∞ ) → +∞ ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 18 |
13 17
|
xrgepnfd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < +∞ ) → ( 𝐹 ‘ 𝑥 ) = +∞ ) |
| 19 |
18
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < +∞ ) → +∞ = ( 𝐹 ‘ 𝑥 ) ) |
| 20 |
1
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Fun 𝐹 ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 23 |
|
fdm |
⊢ ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) → dom 𝐹 = 𝑋 ) |
| 24 |
23
|
eqcomd |
⊢ ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) → 𝑋 = dom 𝐹 ) |
| 25 |
1 24
|
syl |
⊢ ( 𝜑 → 𝑋 = dom 𝐹 ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑋 = dom 𝐹 ) |
| 27 |
22 26
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom 𝐹 ) |
| 28 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
| 29 |
21 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < +∞ ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
| 31 |
19 30
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < +∞ ) → +∞ ∈ ran 𝐹 ) |
| 32 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < +∞ ) → ¬ +∞ ∈ ran 𝐹 ) |
| 33 |
31 32
|
condan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) < +∞ ) |
| 34 |
5 7 10 12 33
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 35 |
34
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 36 |
3 35
|
jca |
⊢ ( 𝜑 → ( 𝐹 Fn 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) |
| 37 |
|
ffnfv |
⊢ ( 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 Fn 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) |
| 38 |
36 37
|
sylibr |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |