Metamath Proof Explorer


Theorem fge0iccico

Description: A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fge0iccico.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
fge0iccico.re ( 𝜑 → ¬ +∞ ∈ ran 𝐹 )
Assertion fge0iccico ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) )

Proof

Step Hyp Ref Expression
1 fge0iccico.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
2 fge0iccico.re ( 𝜑 → ¬ +∞ ∈ ran 𝐹 )
3 1 ffnd ( 𝜑𝐹 Fn 𝑋 )
4 0xr 0 ∈ ℝ*
5 4 a1i ( ( 𝜑𝑥𝑋 ) → 0 ∈ ℝ* )
6 pnfxr +∞ ∈ ℝ*
7 6 a1i ( ( 𝜑𝑥𝑋 ) → +∞ ∈ ℝ* )
8 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
9 1 ffvelrnda ( ( 𝜑𝑥𝑋 ) → ( 𝐹𝑥 ) ∈ ( 0 [,] +∞ ) )
10 8 9 sselid ( ( 𝜑𝑥𝑋 ) → ( 𝐹𝑥 ) ∈ ℝ* )
11 iccgelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐹𝑥 ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝐹𝑥 ) )
12 5 7 9 11 syl3anc ( ( 𝜑𝑥𝑋 ) → 0 ≤ ( 𝐹𝑥 ) )
13 10 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ ( 𝐹𝑥 ) < +∞ ) → ( 𝐹𝑥 ) ∈ ℝ* )
14 simpr ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ ( 𝐹𝑥 ) < +∞ ) → ¬ ( 𝐹𝑥 ) < +∞ )
15 6 a1i ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ ( 𝐹𝑥 ) < +∞ ) → +∞ ∈ ℝ* )
16 15 13 xrlenltd ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ ( 𝐹𝑥 ) < +∞ ) → ( +∞ ≤ ( 𝐹𝑥 ) ↔ ¬ ( 𝐹𝑥 ) < +∞ ) )
17 14 16 mpbird ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ ( 𝐹𝑥 ) < +∞ ) → +∞ ≤ ( 𝐹𝑥 ) )
18 13 17 xrgepnfd ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ ( 𝐹𝑥 ) < +∞ ) → ( 𝐹𝑥 ) = +∞ )
19 18 eqcomd ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ ( 𝐹𝑥 ) < +∞ ) → +∞ = ( 𝐹𝑥 ) )
20 1 ffund ( 𝜑 → Fun 𝐹 )
21 20 adantr ( ( 𝜑𝑥𝑋 ) → Fun 𝐹 )
22 simpr ( ( 𝜑𝑥𝑋 ) → 𝑥𝑋 )
23 fdm ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) → dom 𝐹 = 𝑋 )
24 23 eqcomd ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) → 𝑋 = dom 𝐹 )
25 1 24 syl ( 𝜑𝑋 = dom 𝐹 )
26 25 adantr ( ( 𝜑𝑥𝑋 ) → 𝑋 = dom 𝐹 )
27 22 26 eleqtrd ( ( 𝜑𝑥𝑋 ) → 𝑥 ∈ dom 𝐹 )
28 fvelrn ( ( Fun 𝐹𝑥 ∈ dom 𝐹 ) → ( 𝐹𝑥 ) ∈ ran 𝐹 )
29 21 27 28 syl2anc ( ( 𝜑𝑥𝑋 ) → ( 𝐹𝑥 ) ∈ ran 𝐹 )
30 29 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ ( 𝐹𝑥 ) < +∞ ) → ( 𝐹𝑥 ) ∈ ran 𝐹 )
31 19 30 eqeltrd ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ ( 𝐹𝑥 ) < +∞ ) → +∞ ∈ ran 𝐹 )
32 2 ad2antrr ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ ( 𝐹𝑥 ) < +∞ ) → ¬ +∞ ∈ ran 𝐹 )
33 31 32 condan ( ( 𝜑𝑥𝑋 ) → ( 𝐹𝑥 ) < +∞ )
34 5 7 10 12 33 elicod ( ( 𝜑𝑥𝑋 ) → ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) )
35 34 ralrimiva ( 𝜑 → ∀ 𝑥𝑋 ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) )
36 3 35 jca ( 𝜑 → ( 𝐹 Fn 𝑋 ∧ ∀ 𝑥𝑋 ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) ) )
37 ffnfv ( 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 Fn 𝑋 ∧ ∀ 𝑥𝑋 ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) ) )
38 36 37 sylibr ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) )