Metamath Proof Explorer


Theorem gsumge0cl

Description: Closure of group sum, for finitely supported nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses gsumge0cl.1 𝐺 = ( ℝ*𝑠s ( 0 [,] +∞ ) )
gsumge0cl.2 ( 𝜑𝑋𝑉 )
gsumge0cl.3 ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
gsumge0cl.4 ( 𝜑𝐹 finSupp 0 )
Assertion gsumge0cl ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 0 [,] +∞ ) )

Proof

Step Hyp Ref Expression
1 gsumge0cl.1 𝐺 = ( ℝ*𝑠s ( 0 [,] +∞ ) )
2 gsumge0cl.2 ( 𝜑𝑋𝑉 )
3 gsumge0cl.3 ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
4 gsumge0cl.4 ( 𝜑𝐹 finSupp 0 )
5 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
6 df-ss ( ( 0 [,] +∞ ) ⊆ ℝ* ↔ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) )
7 5 6 mpbi ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ )
8 7 eqcomi ( 0 [,] +∞ ) = ( ( 0 [,] +∞ ) ∩ ℝ* )
9 ovex ( 0 [,] +∞ ) ∈ V
10 xrsbas * = ( Base ‘ ℝ*𝑠 )
11 1 10 ressbas ( ( 0 [,] +∞ ) ∈ V → ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ 𝐺 ) )
12 9 11 ax-mp ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ 𝐺 )
13 8 12 eqtri ( 0 [,] +∞ ) = ( Base ‘ 𝐺 )
14 eqid ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) = ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) )
15 14 xrs1cmn ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) ∈ CMnd
16 cmnmnd ( ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) ∈ CMnd → ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) ∈ Mnd )
17 15 16 ax-mp ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) ∈ Mnd
18 xrge0cmn ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd
19 1 18 eqeltri 𝐺 ∈ CMnd
20 cmnmnd ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd )
21 19 20 ax-mp 𝐺 ∈ Mnd
22 17 21 pm3.2i ( ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) ∈ Mnd ∧ 𝐺 ∈ Mnd )
23 eliccxr ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ∈ ℝ* )
24 mnfxr -∞ ∈ ℝ*
25 24 a1i ( 𝑥 ∈ ( 0 [,] +∞ ) → -∞ ∈ ℝ* )
26 0xr 0 ∈ ℝ*
27 26 a1i ( 𝑥 ∈ ( 0 [,] +∞ ) → 0 ∈ ℝ* )
28 mnflt0 -∞ < 0
29 28 a1i ( 𝑥 ∈ ( 0 [,] +∞ ) → -∞ < 0 )
30 pnfxr +∞ ∈ ℝ*
31 30 a1i ( 𝑥 ∈ ( 0 [,] +∞ ) → +∞ ∈ ℝ* )
32 id ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ∈ ( 0 [,] +∞ ) )
33 iccgelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝑥 )
34 27 31 32 33 syl3anc ( 𝑥 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝑥 )
35 25 27 23 29 34 xrltletrd ( 𝑥 ∈ ( 0 [,] +∞ ) → -∞ < 𝑥 )
36 25 23 35 xrgtned ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ≠ -∞ )
37 nelsn ( 𝑥 ≠ -∞ → ¬ 𝑥 ∈ { -∞ } )
38 36 37 syl ( 𝑥 ∈ ( 0 [,] +∞ ) → ¬ 𝑥 ∈ { -∞ } )
39 23 38 eldifd ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ∈ ( ℝ* ∖ { -∞ } ) )
40 39 rgen 𝑥 ∈ ( 0 [,] +∞ ) 𝑥 ∈ ( ℝ* ∖ { -∞ } )
41 dfss3 ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ↔ ∀ 𝑥 ∈ ( 0 [,] +∞ ) 𝑥 ∈ ( ℝ* ∖ { -∞ } ) )
42 40 41 mpbir ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } )
43 0e0iccpnf 0 ∈ ( 0 [,] +∞ )
44 42 43 pm3.2i ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ∧ 0 ∈ ( 0 [,] +∞ ) )
45 difss ( ℝ* ∖ { -∞ } ) ⊆ ℝ*
46 14 10 ressbas2 ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) ) )
47 45 46 ax-mp ( ℝ* ∖ { -∞ } ) = ( Base ‘ ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) )
48 14 xrs10 0 = ( 0g ‘ ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) )
49 xrex * ∈ V
50 difexg ( ℝ* ∈ V → ( ℝ* ∖ { -∞ } ) ∈ V )
51 49 50 ax-mp ( ℝ* ∖ { -∞ } ) ∈ V
52 44 simpli ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } )
53 ressabs ( ( ( ℝ* ∖ { -∞ } ) ∈ V ∧ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ) → ( ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
54 51 52 53 mp2an ( ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠s ( 0 [,] +∞ ) )
55 1 eqcomi ( ℝ*𝑠s ( 0 [,] +∞ ) ) = 𝐺
56 54 55 eqtr2i 𝐺 = ( ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) )
57 47 48 56 submnd0 ( ( ( ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) ∈ Mnd ∧ 𝐺 ∈ Mnd ) ∧ ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ∧ 0 ∈ ( 0 [,] +∞ ) ) ) → 0 = ( 0g𝐺 ) )
58 22 44 57 mp2an 0 = ( 0g𝐺 )
59 19 a1i ( 𝜑𝐺 ∈ CMnd )
60 13 58 59 2 3 4 gsumcl ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 0 [,] +∞ ) )