| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumge0cl.1 |
⊢ 𝐺 = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 2 |
|
gsumge0cl.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 3 |
|
gsumge0cl.3 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 4 |
|
gsumge0cl.4 |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 5 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 6 |
|
dfss2 |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* ↔ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) ) |
| 7 |
5 6
|
mpbi |
⊢ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) |
| 8 |
7
|
eqcomi |
⊢ ( 0 [,] +∞ ) = ( ( 0 [,] +∞ ) ∩ ℝ* ) |
| 9 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
| 10 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
| 11 |
1 10
|
ressbas |
⊢ ( ( 0 [,] +∞ ) ∈ V → ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ 𝐺 ) ) |
| 12 |
9 11
|
ax-mp |
⊢ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ 𝐺 ) |
| 13 |
8 12
|
eqtri |
⊢ ( 0 [,] +∞ ) = ( Base ‘ 𝐺 ) |
| 14 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) |
| 15 |
14
|
xrs1cmn |
⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ CMnd |
| 16 |
|
cmnmnd |
⊢ ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ CMnd → ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ Mnd ) |
| 17 |
15 16
|
ax-mp |
⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ Mnd |
| 18 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
| 19 |
1 18
|
eqeltri |
⊢ 𝐺 ∈ CMnd |
| 20 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
| 21 |
19 20
|
ax-mp |
⊢ 𝐺 ∈ Mnd |
| 22 |
17 21
|
pm3.2i |
⊢ ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ Mnd ∧ 𝐺 ∈ Mnd ) |
| 23 |
|
eliccxr |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ∈ ℝ* ) |
| 24 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 25 |
24
|
a1i |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → -∞ ∈ ℝ* ) |
| 26 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 27 |
26
|
a1i |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 0 ∈ ℝ* ) |
| 28 |
|
mnflt0 |
⊢ -∞ < 0 |
| 29 |
28
|
a1i |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → -∞ < 0 ) |
| 30 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 31 |
30
|
a1i |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → +∞ ∈ ℝ* ) |
| 32 |
|
id |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
| 33 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝑥 ) |
| 34 |
27 31 32 33
|
syl3anc |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝑥 ) |
| 35 |
25 27 23 29 34
|
xrltletrd |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → -∞ < 𝑥 ) |
| 36 |
25 23 35
|
xrgtned |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ≠ -∞ ) |
| 37 |
|
nelsn |
⊢ ( 𝑥 ≠ -∞ → ¬ 𝑥 ∈ { -∞ } ) |
| 38 |
36 37
|
syl |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → ¬ 𝑥 ∈ { -∞ } ) |
| 39 |
23 38
|
eldifd |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ) |
| 40 |
39
|
rgen |
⊢ ∀ 𝑥 ∈ ( 0 [,] +∞ ) 𝑥 ∈ ( ℝ* ∖ { -∞ } ) |
| 41 |
|
dfss3 |
⊢ ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ↔ ∀ 𝑥 ∈ ( 0 [,] +∞ ) 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ) |
| 42 |
40 41
|
mpbir |
⊢ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) |
| 43 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
| 44 |
42 43
|
pm3.2i |
⊢ ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ∧ 0 ∈ ( 0 [,] +∞ ) ) |
| 45 |
|
difss |
⊢ ( ℝ* ∖ { -∞ } ) ⊆ ℝ* |
| 46 |
14 10
|
ressbas2 |
⊢ ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) ) |
| 47 |
45 46
|
ax-mp |
⊢ ( ℝ* ∖ { -∞ } ) = ( Base ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
| 48 |
14
|
xrs10 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
| 49 |
|
xrex |
⊢ ℝ* ∈ V |
| 50 |
|
difexg |
⊢ ( ℝ* ∈ V → ( ℝ* ∖ { -∞ } ) ∈ V ) |
| 51 |
49 50
|
ax-mp |
⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
| 52 |
44
|
simpli |
⊢ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) |
| 53 |
|
ressabs |
⊢ ( ( ( ℝ* ∖ { -∞ } ) ∈ V ∧ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ) → ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 54 |
51 52 53
|
mp2an |
⊢ ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 55 |
1
|
eqcomi |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = 𝐺 |
| 56 |
54 55
|
eqtr2i |
⊢ 𝐺 = ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) |
| 57 |
47 48 56
|
submnd0 |
⊢ ( ( ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ Mnd ∧ 𝐺 ∈ Mnd ) ∧ ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ∧ 0 ∈ ( 0 [,] +∞ ) ) ) → 0 = ( 0g ‘ 𝐺 ) ) |
| 58 |
22 44 57
|
mp2an |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 59 |
19
|
a1i |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 60 |
13 58 59 2 3 4
|
gsumcl |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 0 [,] +∞ ) ) |