Step |
Hyp |
Ref |
Expression |
1 |
|
gsumge0cl.1 |
|- G = ( RR*s |`s ( 0 [,] +oo ) ) |
2 |
|
gsumge0cl.2 |
|- ( ph -> X e. V ) |
3 |
|
gsumge0cl.3 |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
4 |
|
gsumge0cl.4 |
|- ( ph -> F finSupp 0 ) |
5 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
6 |
|
df-ss |
|- ( ( 0 [,] +oo ) C_ RR* <-> ( ( 0 [,] +oo ) i^i RR* ) = ( 0 [,] +oo ) ) |
7 |
5 6
|
mpbi |
|- ( ( 0 [,] +oo ) i^i RR* ) = ( 0 [,] +oo ) |
8 |
7
|
eqcomi |
|- ( 0 [,] +oo ) = ( ( 0 [,] +oo ) i^i RR* ) |
9 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
10 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
11 |
1 10
|
ressbas |
|- ( ( 0 [,] +oo ) e. _V -> ( ( 0 [,] +oo ) i^i RR* ) = ( Base ` G ) ) |
12 |
9 11
|
ax-mp |
|- ( ( 0 [,] +oo ) i^i RR* ) = ( Base ` G ) |
13 |
8 12
|
eqtri |
|- ( 0 [,] +oo ) = ( Base ` G ) |
14 |
|
eqid |
|- ( RR*s |`s ( RR* \ { -oo } ) ) = ( RR*s |`s ( RR* \ { -oo } ) ) |
15 |
14
|
xrs1cmn |
|- ( RR*s |`s ( RR* \ { -oo } ) ) e. CMnd |
16 |
|
cmnmnd |
|- ( ( RR*s |`s ( RR* \ { -oo } ) ) e. CMnd -> ( RR*s |`s ( RR* \ { -oo } ) ) e. Mnd ) |
17 |
15 16
|
ax-mp |
|- ( RR*s |`s ( RR* \ { -oo } ) ) e. Mnd |
18 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
19 |
1 18
|
eqeltri |
|- G e. CMnd |
20 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
21 |
19 20
|
ax-mp |
|- G e. Mnd |
22 |
17 21
|
pm3.2i |
|- ( ( RR*s |`s ( RR* \ { -oo } ) ) e. Mnd /\ G e. Mnd ) |
23 |
|
eliccxr |
|- ( x e. ( 0 [,] +oo ) -> x e. RR* ) |
24 |
|
mnfxr |
|- -oo e. RR* |
25 |
24
|
a1i |
|- ( x e. ( 0 [,] +oo ) -> -oo e. RR* ) |
26 |
|
0xr |
|- 0 e. RR* |
27 |
26
|
a1i |
|- ( x e. ( 0 [,] +oo ) -> 0 e. RR* ) |
28 |
|
mnflt0 |
|- -oo < 0 |
29 |
28
|
a1i |
|- ( x e. ( 0 [,] +oo ) -> -oo < 0 ) |
30 |
|
pnfxr |
|- +oo e. RR* |
31 |
30
|
a1i |
|- ( x e. ( 0 [,] +oo ) -> +oo e. RR* ) |
32 |
|
id |
|- ( x e. ( 0 [,] +oo ) -> x e. ( 0 [,] +oo ) ) |
33 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ x e. ( 0 [,] +oo ) ) -> 0 <_ x ) |
34 |
27 31 32 33
|
syl3anc |
|- ( x e. ( 0 [,] +oo ) -> 0 <_ x ) |
35 |
25 27 23 29 34
|
xrltletrd |
|- ( x e. ( 0 [,] +oo ) -> -oo < x ) |
36 |
25 23 35
|
xrgtned |
|- ( x e. ( 0 [,] +oo ) -> x =/= -oo ) |
37 |
|
nelsn |
|- ( x =/= -oo -> -. x e. { -oo } ) |
38 |
36 37
|
syl |
|- ( x e. ( 0 [,] +oo ) -> -. x e. { -oo } ) |
39 |
23 38
|
eldifd |
|- ( x e. ( 0 [,] +oo ) -> x e. ( RR* \ { -oo } ) ) |
40 |
39
|
rgen |
|- A. x e. ( 0 [,] +oo ) x e. ( RR* \ { -oo } ) |
41 |
|
dfss3 |
|- ( ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) <-> A. x e. ( 0 [,] +oo ) x e. ( RR* \ { -oo } ) ) |
42 |
40 41
|
mpbir |
|- ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) |
43 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
44 |
42 43
|
pm3.2i |
|- ( ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) /\ 0 e. ( 0 [,] +oo ) ) |
45 |
|
difss |
|- ( RR* \ { -oo } ) C_ RR* |
46 |
14 10
|
ressbas2 |
|- ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` ( RR*s |`s ( RR* \ { -oo } ) ) ) ) |
47 |
45 46
|
ax-mp |
|- ( RR* \ { -oo } ) = ( Base ` ( RR*s |`s ( RR* \ { -oo } ) ) ) |
48 |
14
|
xrs10 |
|- 0 = ( 0g ` ( RR*s |`s ( RR* \ { -oo } ) ) ) |
49 |
|
xrex |
|- RR* e. _V |
50 |
|
difexg |
|- ( RR* e. _V -> ( RR* \ { -oo } ) e. _V ) |
51 |
49 50
|
ax-mp |
|- ( RR* \ { -oo } ) e. _V |
52 |
44
|
simpli |
|- ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) |
53 |
|
ressabs |
|- ( ( ( RR* \ { -oo } ) e. _V /\ ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) ) -> ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) ) |
54 |
51 52 53
|
mp2an |
|- ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
55 |
1
|
eqcomi |
|- ( RR*s |`s ( 0 [,] +oo ) ) = G |
56 |
54 55
|
eqtr2i |
|- G = ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) |
57 |
47 48 56
|
submnd0 |
|- ( ( ( ( RR*s |`s ( RR* \ { -oo } ) ) e. Mnd /\ G e. Mnd ) /\ ( ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) /\ 0 e. ( 0 [,] +oo ) ) ) -> 0 = ( 0g ` G ) ) |
58 |
22 44 57
|
mp2an |
|- 0 = ( 0g ` G ) |
59 |
19
|
a1i |
|- ( ph -> G e. CMnd ) |
60 |
13 58 59 2 3 4
|
gsumcl |
|- ( ph -> ( G gsum F ) e. ( 0 [,] +oo ) ) |