Metamath Proof Explorer


Theorem sge0reval

Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0reval.x
|- ( ph -> X e. V )
sge0reval.f
|- ( ph -> F : X --> ( 0 [,) +oo ) )
Assertion sge0reval
|- ( ph -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) )

Proof

Step Hyp Ref Expression
1 sge0reval.x
 |-  ( ph -> X e. V )
2 sge0reval.f
 |-  ( ph -> F : X --> ( 0 [,) +oo ) )
3 2 fge0icoicc
 |-  ( ph -> F : X --> ( 0 [,] +oo ) )
4 1 3 sge0vald
 |-  ( ph -> ( sum^ ` F ) = if ( +oo e. ran F , +oo , sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) )
5 2 fge0npnf
 |-  ( ph -> -. +oo e. ran F )
6 5 iffalsed
 |-  ( ph -> if ( +oo e. ran F , +oo , sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) )
7 4 6 eqtrd
 |-  ( ph -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) )