| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fge0npnf.1 |  |-  ( ph -> F : X --> ( 0 [,) +oo ) ) | 
						
							| 2 | 1 | frnd |  |-  ( ph -> ran F C_ ( 0 [,) +oo ) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( ph /\ +oo e. ran F ) -> ran F C_ ( 0 [,) +oo ) ) | 
						
							| 4 |  | simpr |  |-  ( ( ph /\ +oo e. ran F ) -> +oo e. ran F ) | 
						
							| 5 | 3 4 | sseldd |  |-  ( ( ph /\ +oo e. ran F ) -> +oo e. ( 0 [,) +oo ) ) | 
						
							| 6 |  | 0xr |  |-  0 e. RR* | 
						
							| 7 |  | icoub |  |-  ( 0 e. RR* -> -. +oo e. ( 0 [,) +oo ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  -. +oo e. ( 0 [,) +oo ) | 
						
							| 9 | 8 | a1i |  |-  ( ( ph /\ +oo e. ran F ) -> -. +oo e. ( 0 [,) +oo ) ) | 
						
							| 10 | 5 9 | pm2.65da |  |-  ( ph -> -. +oo e. ran F ) |