Step |
Hyp |
Ref |
Expression |
1 |
|
fge0npnf.1 |
|- ( ph -> F : X --> ( 0 [,) +oo ) ) |
2 |
1
|
frnd |
|- ( ph -> ran F C_ ( 0 [,) +oo ) ) |
3 |
2
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> ran F C_ ( 0 [,) +oo ) ) |
4 |
|
simpr |
|- ( ( ph /\ +oo e. ran F ) -> +oo e. ran F ) |
5 |
3 4
|
sseldd |
|- ( ( ph /\ +oo e. ran F ) -> +oo e. ( 0 [,) +oo ) ) |
6 |
|
0xr |
|- 0 e. RR* |
7 |
|
icoub |
|- ( 0 e. RR* -> -. +oo e. ( 0 [,) +oo ) ) |
8 |
6 7
|
ax-mp |
|- -. +oo e. ( 0 [,) +oo ) |
9 |
8
|
a1i |
|- ( ( ph /\ +oo e. ran F ) -> -. +oo e. ( 0 [,) +oo ) ) |
10 |
5 9
|
pm2.65da |
|- ( ph -> -. +oo e. ran F ) |