Metamath Proof Explorer


Theorem fge0npnf

Description: If F maps to nonnegative reals, then +oo is not in its range. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis fge0npnf.1
|- ( ph -> F : X --> ( 0 [,) +oo ) )
Assertion fge0npnf
|- ( ph -> -. +oo e. ran F )

Proof

Step Hyp Ref Expression
1 fge0npnf.1
 |-  ( ph -> F : X --> ( 0 [,) +oo ) )
2 1 frnd
 |-  ( ph -> ran F C_ ( 0 [,) +oo ) )
3 2 adantr
 |-  ( ( ph /\ +oo e. ran F ) -> ran F C_ ( 0 [,) +oo ) )
4 simpr
 |-  ( ( ph /\ +oo e. ran F ) -> +oo e. ran F )
5 3 4 sseldd
 |-  ( ( ph /\ +oo e. ran F ) -> +oo e. ( 0 [,) +oo ) )
6 0xr
 |-  0 e. RR*
7 icoub
 |-  ( 0 e. RR* -> -. +oo e. ( 0 [,) +oo ) )
8 6 7 ax-mp
 |-  -. +oo e. ( 0 [,) +oo )
9 8 a1i
 |-  ( ( ph /\ +oo e. ran F ) -> -. +oo e. ( 0 [,) +oo ) )
10 5 9 pm2.65da
 |-  ( ph -> -. +oo e. ran F )