| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. RR* /\ B e. ( A [,) B ) ) -> A e. RR* ) |
| 2 |
|
icossxr |
|- ( A [,) B ) C_ RR* |
| 3 |
|
id |
|- ( B e. ( A [,) B ) -> B e. ( A [,) B ) ) |
| 4 |
2 3
|
sselid |
|- ( B e. ( A [,) B ) -> B e. RR* ) |
| 5 |
4
|
adantl |
|- ( ( A e. RR* /\ B e. ( A [,) B ) ) -> B e. RR* ) |
| 6 |
|
simpr |
|- ( ( A e. RR* /\ B e. ( A [,) B ) ) -> B e. ( A [,) B ) ) |
| 7 |
|
icoltub |
|- ( ( A e. RR* /\ B e. RR* /\ B e. ( A [,) B ) ) -> B < B ) |
| 8 |
1 5 6 7
|
syl3anc |
|- ( ( A e. RR* /\ B e. ( A [,) B ) ) -> B < B ) |
| 9 |
|
xrltnr |
|- ( B e. RR* -> -. B < B ) |
| 10 |
4 9
|
syl |
|- ( B e. ( A [,) B ) -> -. B < B ) |
| 11 |
10
|
adantl |
|- ( ( A e. RR* /\ B e. ( A [,) B ) ) -> -. B < B ) |
| 12 |
8 11
|
pm2.65da |
|- ( A e. RR* -> -. B e. ( A [,) B ) ) |