Step |
Hyp |
Ref |
Expression |
1 |
|
0elpw |
|- (/) e. ~P X |
2 |
|
0fin |
|- (/) e. Fin |
3 |
1 2
|
elini |
|- (/) e. ( ~P X i^i Fin ) |
4 |
|
sum0 |
|- sum_ y e. (/) ( F ` y ) = 0 |
5 |
4
|
eqcomi |
|- 0 = sum_ y e. (/) ( F ` y ) |
6 |
|
sumeq1 |
|- ( x = (/) -> sum_ y e. x ( F ` y ) = sum_ y e. (/) ( F ` y ) ) |
7 |
6
|
rspceeqv |
|- ( ( (/) e. ( ~P X i^i Fin ) /\ 0 = sum_ y e. (/) ( F ` y ) ) -> E. x e. ( ~P X i^i Fin ) 0 = sum_ y e. x ( F ` y ) ) |
8 |
3 5 7
|
mp2an |
|- E. x e. ( ~P X i^i Fin ) 0 = sum_ y e. x ( F ` y ) |
9 |
|
0re |
|- 0 e. RR |
10 |
|
eqid |
|- ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) = ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) |
11 |
10
|
elrnmpt |
|- ( 0 e. RR -> ( 0 e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) <-> E. x e. ( ~P X i^i Fin ) 0 = sum_ y e. x ( F ` y ) ) ) |
12 |
9 11
|
ax-mp |
|- ( 0 e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) <-> E. x e. ( ~P X i^i Fin ) 0 = sum_ y e. x ( F ` y ) ) |
13 |
8 12
|
mpbir |
|- 0 e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) |
14 |
|
ne0i |
|- ( 0 e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) =/= (/) ) |
15 |
13 14
|
ax-mp |
|- ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) =/= (/) |