| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0elpw |
|- (/) e. ~P X |
| 2 |
|
0fi |
|- (/) e. Fin |
| 3 |
1 2
|
elini |
|- (/) e. ( ~P X i^i Fin ) |
| 4 |
|
sum0 |
|- sum_ y e. (/) ( F ` y ) = 0 |
| 5 |
4
|
eqcomi |
|- 0 = sum_ y e. (/) ( F ` y ) |
| 6 |
|
sumeq1 |
|- ( x = (/) -> sum_ y e. x ( F ` y ) = sum_ y e. (/) ( F ` y ) ) |
| 7 |
6
|
rspceeqv |
|- ( ( (/) e. ( ~P X i^i Fin ) /\ 0 = sum_ y e. (/) ( F ` y ) ) -> E. x e. ( ~P X i^i Fin ) 0 = sum_ y e. x ( F ` y ) ) |
| 8 |
3 5 7
|
mp2an |
|- E. x e. ( ~P X i^i Fin ) 0 = sum_ y e. x ( F ` y ) |
| 9 |
|
0re |
|- 0 e. RR |
| 10 |
|
eqid |
|- ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) = ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) |
| 11 |
10
|
elrnmpt |
|- ( 0 e. RR -> ( 0 e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) <-> E. x e. ( ~P X i^i Fin ) 0 = sum_ y e. x ( F ` y ) ) ) |
| 12 |
9 11
|
ax-mp |
|- ( 0 e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) <-> E. x e. ( ~P X i^i Fin ) 0 = sum_ y e. x ( F ` y ) ) |
| 13 |
8 12
|
mpbir |
|- 0 e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) |
| 14 |
|
ne0i |
|- ( 0 e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) =/= (/) ) |
| 15 |
13 14
|
ax-mp |
|- ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) =/= (/) |