Metamath Proof Explorer


Theorem sge0rnn0

Description: The range used in the definition of sum^ is not empty. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion sge0rnn0
|- ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) =/= (/)

Proof

Step Hyp Ref Expression
1 0elpw
 |-  (/) e. ~P X
2 0fin
 |-  (/) e. Fin
3 1 2 elini
 |-  (/) e. ( ~P X i^i Fin )
4 sum0
 |-  sum_ y e. (/) ( F ` y ) = 0
5 4 eqcomi
 |-  0 = sum_ y e. (/) ( F ` y )
6 sumeq1
 |-  ( x = (/) -> sum_ y e. x ( F ` y ) = sum_ y e. (/) ( F ` y ) )
7 6 rspceeqv
 |-  ( ( (/) e. ( ~P X i^i Fin ) /\ 0 = sum_ y e. (/) ( F ` y ) ) -> E. x e. ( ~P X i^i Fin ) 0 = sum_ y e. x ( F ` y ) )
8 3 5 7 mp2an
 |-  E. x e. ( ~P X i^i Fin ) 0 = sum_ y e. x ( F ` y )
9 0re
 |-  0 e. RR
10 eqid
 |-  ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) = ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) )
11 10 elrnmpt
 |-  ( 0 e. RR -> ( 0 e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) <-> E. x e. ( ~P X i^i Fin ) 0 = sum_ y e. x ( F ` y ) ) )
12 9 11 ax-mp
 |-  ( 0 e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) <-> E. x e. ( ~P X i^i Fin ) 0 = sum_ y e. x ( F ` y ) )
13 8 12 mpbir
 |-  0 e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) )
14 ne0i
 |-  ( 0 e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) =/= (/) )
15 13 14 ax-mp
 |-  ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) =/= (/)