Step |
Hyp |
Ref |
Expression |
1 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑋 |
2 |
|
0fin |
⊢ ∅ ∈ Fin |
3 |
1 2
|
elini |
⊢ ∅ ∈ ( 𝒫 𝑋 ∩ Fin ) |
4 |
|
sum0 |
⊢ Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) = 0 |
5 |
4
|
eqcomi |
⊢ 0 = Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) |
6 |
|
sumeq1 |
⊢ ( 𝑥 = ∅ → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) ) |
7 |
6
|
rspceeqv |
⊢ ( ( ∅ ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 0 = Σ 𝑦 ∈ ∅ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 0 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
8 |
3 5 7
|
mp2an |
⊢ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 0 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) |
9 |
|
0re |
⊢ 0 ∈ ℝ |
10 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
11 |
10
|
elrnmpt |
⊢ ( 0 ∈ ℝ → ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 0 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
12 |
9 11
|
ax-mp |
⊢ ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 0 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
13 |
8 12
|
mpbir |
⊢ 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
14 |
|
ne0i |
⊢ ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ) |
15 |
13 14
|
ax-mp |
⊢ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ |