Metamath Proof Explorer


Theorem sge0rnn0

Description: The range used in the definition of sum^ is not empty. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion sge0rnn0 ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) ≠ ∅

Proof

Step Hyp Ref Expression
1 0elpw ∅ ∈ 𝒫 𝑋
2 0fin ∅ ∈ Fin
3 1 2 elini ∅ ∈ ( 𝒫 𝑋 ∩ Fin )
4 sum0 Σ 𝑦 ∈ ∅ ( 𝐹𝑦 ) = 0
5 4 eqcomi 0 = Σ 𝑦 ∈ ∅ ( 𝐹𝑦 )
6 sumeq1 ( 𝑥 = ∅ → Σ 𝑦𝑥 ( 𝐹𝑦 ) = Σ 𝑦 ∈ ∅ ( 𝐹𝑦 ) )
7 6 rspceeqv ( ( ∅ ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 0 = Σ 𝑦 ∈ ∅ ( 𝐹𝑦 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 0 = Σ 𝑦𝑥 ( 𝐹𝑦 ) )
8 3 5 7 mp2an 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 0 = Σ 𝑦𝑥 ( 𝐹𝑦 )
9 0re 0 ∈ ℝ
10 eqid ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) )
11 10 elrnmpt ( 0 ∈ ℝ → ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 0 = Σ 𝑦𝑥 ( 𝐹𝑦 ) ) )
12 9 11 ax-mp ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 0 = Σ 𝑦𝑥 ( 𝐹𝑦 ) )
13 8 12 mpbir 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) )
14 ne0i ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) ≠ ∅ )
15 13 14 ax-mp ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) ≠ ∅