Metamath Proof Explorer


Theorem sge0vald

Description: The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0vald.x ( 𝜑𝑋𝑉 )
sge0vald.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
Assertion sge0vald ( 𝜑 → ( Σ^𝐹 ) = if ( +∞ ∈ ran 𝐹 , +∞ , sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) ) )

Proof

Step Hyp Ref Expression
1 sge0vald.x ( 𝜑𝑋𝑉 )
2 sge0vald.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
3 sge0val ( ( 𝑋𝑉𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) → ( Σ^𝐹 ) = if ( +∞ ∈ ran 𝐹 , +∞ , sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) ) )
4 1 2 3 syl2anc ( 𝜑 → ( Σ^𝐹 ) = if ( +∞ ∈ ran 𝐹 , +∞ , sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) ) )