| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-sumge0 | ⊢ Σ^  =  ( 𝑥  ∈  V  ↦  if ( +∞  ∈  ran  𝑥 ,  +∞ ,  sup ( ran  ( 𝑦  ∈  ( 𝒫  dom  𝑥  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝑥 ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  →  Σ^  =  ( 𝑥  ∈  V  ↦  if ( +∞  ∈  ran  𝑥 ,  +∞ ,  sup ( ran  ( 𝑦  ∈  ( 𝒫  dom  𝑥  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝑥 ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) ) ) | 
						
							| 3 |  | rneq | ⊢ ( 𝑥  =  𝐹  →  ran  𝑥  =  ran  𝐹 ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝑥  =  𝐹  →  ( +∞  ∈  ran  𝑥  ↔  +∞  ∈  ran  𝐹 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  ∧  𝑥  =  𝐹 )  →  ( +∞  ∈  ran  𝑥  ↔  +∞  ∈  ran  𝐹 ) ) | 
						
							| 6 |  | dmeq | ⊢ ( 𝑥  =  𝐹  →  dom  𝑥  =  dom  𝐹 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  𝐹 )  →  dom  𝑥  =  dom  𝐹 ) | 
						
							| 8 |  | fdm | ⊢ ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ )  →  dom  𝐹  =  𝑋 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  𝐹 )  →  dom  𝐹  =  𝑋 ) | 
						
							| 10 | 7 9 | eqtrd | ⊢ ( ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  𝐹 )  →  dom  𝑥  =  𝑋 ) | 
						
							| 11 | 10 | pweqd | ⊢ ( ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  𝐹 )  →  𝒫  dom  𝑥  =  𝒫  𝑋 ) | 
						
							| 12 | 11 | ineq1d | ⊢ ( ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  𝐹 )  →  ( 𝒫  dom  𝑥  ∩  Fin )  =  ( 𝒫  𝑋  ∩  Fin ) ) | 
						
							| 13 | 12 | mpteq1d | ⊢ ( ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  𝐹 )  →  ( 𝑦  ∈  ( 𝒫  dom  𝑥  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝑥 ‘ 𝑤 ) )  =  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝑥 ‘ 𝑤 ) ) ) | 
						
							| 14 | 13 | adantll | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  ∧  𝑥  =  𝐹 )  →  ( 𝑦  ∈  ( 𝒫  dom  𝑥  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝑥 ‘ 𝑤 ) )  =  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝑥 ‘ 𝑤 ) ) ) | 
						
							| 15 |  | fveq1 | ⊢ ( 𝑥  =  𝐹  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 16 | 15 | sumeq2sdv | ⊢ ( 𝑥  =  𝐹  →  Σ 𝑤  ∈  𝑦 ( 𝑥 ‘ 𝑤 )  =  Σ 𝑤  ∈  𝑦 ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 17 | 16 | mpteq2dv | ⊢ ( 𝑥  =  𝐹  →  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝑥 ‘ 𝑤 ) )  =  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  ∧  𝑥  =  𝐹 )  →  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝑥 ‘ 𝑤 ) )  =  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 19 | 14 18 | eqtrd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  ∧  𝑥  =  𝐹 )  →  ( 𝑦  ∈  ( 𝒫  dom  𝑥  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝑥 ‘ 𝑤 ) )  =  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 20 | 19 | rneqd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  ∧  𝑥  =  𝐹 )  →  ran  ( 𝑦  ∈  ( 𝒫  dom  𝑥  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝑥 ‘ 𝑤 ) )  =  ran  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 21 | 20 | supeq1d | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  ∧  𝑥  =  𝐹 )  →  sup ( ran  ( 𝑦  ∈  ( 𝒫  dom  𝑥  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝑥 ‘ 𝑤 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝐹 ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 22 | 5 21 | ifbieq2d | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  ∧  𝑥  =  𝐹 )  →  if ( +∞  ∈  ran  𝑥 ,  +∞ ,  sup ( ran  ( 𝑦  ∈  ( 𝒫  dom  𝑥  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝑥 ‘ 𝑤 ) ) ,  ℝ* ,   <  ) )  =  if ( +∞  ∈  ran  𝐹 ,  +∞ ,  sup ( ran  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝐹 ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 24 |  | simpl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 25 | 23 24 | fexd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  →  𝐹  ∈  V ) | 
						
							| 26 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 27 | 26 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  →  +∞  ∈  ℝ* ) | 
						
							| 28 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 29 | 28 | supex | ⊢ sup ( ran  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝐹 ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  V | 
						
							| 30 | 29 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  →  sup ( ran  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝐹 ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  V ) | 
						
							| 31 | 27 30 | ifexd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  →  if ( +∞  ∈  ran  𝐹 ,  +∞ ,  sup ( ran  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝐹 ‘ 𝑤 ) ) ,  ℝ* ,   <  ) )  ∈  V ) | 
						
							| 32 | 2 22 25 31 | fvmptd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )  →  ( Σ^ ‘ 𝐹 )  =  if ( +∞  ∈  ran  𝐹 ,  +∞ ,  sup ( ran  ( 𝑦  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑤  ∈  𝑦 ( 𝐹 ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) ) |