Step |
Hyp |
Ref |
Expression |
0 |
|
csumge0 |
⊢ Σ^ |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cvv |
⊢ V |
3 |
|
cpnf |
⊢ +∞ |
4 |
1
|
cv |
⊢ 𝑥 |
5 |
4
|
crn |
⊢ ran 𝑥 |
6 |
3 5
|
wcel |
⊢ +∞ ∈ ran 𝑥 |
7 |
|
vy |
⊢ 𝑦 |
8 |
4
|
cdm |
⊢ dom 𝑥 |
9 |
8
|
cpw |
⊢ 𝒫 dom 𝑥 |
10 |
|
cfn |
⊢ Fin |
11 |
9 10
|
cin |
⊢ ( 𝒫 dom 𝑥 ∩ Fin ) |
12 |
|
vw |
⊢ 𝑤 |
13 |
7
|
cv |
⊢ 𝑦 |
14 |
12
|
cv |
⊢ 𝑤 |
15 |
14 4
|
cfv |
⊢ ( 𝑥 ‘ 𝑤 ) |
16 |
13 15 12
|
csu |
⊢ Σ 𝑤 ∈ 𝑦 ( 𝑥 ‘ 𝑤 ) |
17 |
7 11 16
|
cmpt |
⊢ ( 𝑦 ∈ ( 𝒫 dom 𝑥 ∩ Fin ) ↦ Σ 𝑤 ∈ 𝑦 ( 𝑥 ‘ 𝑤 ) ) |
18 |
17
|
crn |
⊢ ran ( 𝑦 ∈ ( 𝒫 dom 𝑥 ∩ Fin ) ↦ Σ 𝑤 ∈ 𝑦 ( 𝑥 ‘ 𝑤 ) ) |
19 |
|
cxr |
⊢ ℝ* |
20 |
|
clt |
⊢ < |
21 |
18 19 20
|
csup |
⊢ sup ( ran ( 𝑦 ∈ ( 𝒫 dom 𝑥 ∩ Fin ) ↦ Σ 𝑤 ∈ 𝑦 ( 𝑥 ‘ 𝑤 ) ) , ℝ* , < ) |
22 |
6 3 21
|
cif |
⊢ if ( +∞ ∈ ran 𝑥 , +∞ , sup ( ran ( 𝑦 ∈ ( 𝒫 dom 𝑥 ∩ Fin ) ↦ Σ 𝑤 ∈ 𝑦 ( 𝑥 ‘ 𝑤 ) ) , ℝ* , < ) ) |
23 |
1 2 22
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ if ( +∞ ∈ ran 𝑥 , +∞ , sup ( ran ( 𝑦 ∈ ( 𝒫 dom 𝑥 ∩ Fin ) ↦ Σ 𝑤 ∈ 𝑦 ( 𝑥 ‘ 𝑤 ) ) , ℝ* , < ) ) ) |
24 |
0 23
|
wceq |
⊢ Σ^ = ( 𝑥 ∈ V ↦ if ( +∞ ∈ ran 𝑥 , +∞ , sup ( ran ( 𝑦 ∈ ( 𝒫 dom 𝑥 ∩ Fin ) ↦ Σ 𝑤 ∈ 𝑦 ( 𝑥 ‘ 𝑤 ) ) , ℝ* , < ) ) ) |