Metamath Proof Explorer


Definition df-sumge0

Description: Define the arbitrary sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020) $.

Ref Expression
Assertion df-sumge0 Σ^ = ( 𝑥 ∈ V ↦ if ( +∞ ∈ ran 𝑥 , +∞ , sup ( ran ( 𝑦 ∈ ( 𝒫 dom 𝑥 ∩ Fin ) ↦ Σ 𝑤𝑦 ( 𝑥𝑤 ) ) , ℝ* , < ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csumge0 Σ^
1 vx 𝑥
2 cvv V
3 cpnf +∞
4 1 cv 𝑥
5 4 crn ran 𝑥
6 3 5 wcel +∞ ∈ ran 𝑥
7 vy 𝑦
8 4 cdm dom 𝑥
9 8 cpw 𝒫 dom 𝑥
10 cfn Fin
11 9 10 cin ( 𝒫 dom 𝑥 ∩ Fin )
12 vw 𝑤
13 7 cv 𝑦
14 12 cv 𝑤
15 14 4 cfv ( 𝑥𝑤 )
16 13 15 12 csu Σ 𝑤𝑦 ( 𝑥𝑤 )
17 7 11 16 cmpt ( 𝑦 ∈ ( 𝒫 dom 𝑥 ∩ Fin ) ↦ Σ 𝑤𝑦 ( 𝑥𝑤 ) )
18 17 crn ran ( 𝑦 ∈ ( 𝒫 dom 𝑥 ∩ Fin ) ↦ Σ 𝑤𝑦 ( 𝑥𝑤 ) )
19 cxr *
20 clt <
21 18 19 20 csup sup ( ran ( 𝑦 ∈ ( 𝒫 dom 𝑥 ∩ Fin ) ↦ Σ 𝑤𝑦 ( 𝑥𝑤 ) ) , ℝ* , < )
22 6 3 21 cif if ( +∞ ∈ ran 𝑥 , +∞ , sup ( ran ( 𝑦 ∈ ( 𝒫 dom 𝑥 ∩ Fin ) ↦ Σ 𝑤𝑦 ( 𝑥𝑤 ) ) , ℝ* , < ) )
23 1 2 22 cmpt ( 𝑥 ∈ V ↦ if ( +∞ ∈ ran 𝑥 , +∞ , sup ( ran ( 𝑦 ∈ ( 𝒫 dom 𝑥 ∩ Fin ) ↦ Σ 𝑤𝑦 ( 𝑥𝑤 ) ) , ℝ* , < ) ) )
24 0 23 wceq Σ^ = ( 𝑥 ∈ V ↦ if ( +∞ ∈ ran 𝑥 , +∞ , sup ( ran ( 𝑦 ∈ ( 𝒫 dom 𝑥 ∩ Fin ) ↦ Σ 𝑤𝑦 ( 𝑥𝑤 ) ) , ℝ* , < ) ) )