| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csumge0 |
|- sum^ |
| 1 |
|
vx |
|- x |
| 2 |
|
cvv |
|- _V |
| 3 |
|
cpnf |
|- +oo |
| 4 |
1
|
cv |
|- x |
| 5 |
4
|
crn |
|- ran x |
| 6 |
3 5
|
wcel |
|- +oo e. ran x |
| 7 |
|
vy |
|- y |
| 8 |
4
|
cdm |
|- dom x |
| 9 |
8
|
cpw |
|- ~P dom x |
| 10 |
|
cfn |
|- Fin |
| 11 |
9 10
|
cin |
|- ( ~P dom x i^i Fin ) |
| 12 |
|
vw |
|- w |
| 13 |
7
|
cv |
|- y |
| 14 |
12
|
cv |
|- w |
| 15 |
14 4
|
cfv |
|- ( x ` w ) |
| 16 |
13 15 12
|
csu |
|- sum_ w e. y ( x ` w ) |
| 17 |
7 11 16
|
cmpt |
|- ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) |
| 18 |
17
|
crn |
|- ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) |
| 19 |
|
cxr |
|- RR* |
| 20 |
|
clt |
|- < |
| 21 |
18 19 20
|
csup |
|- sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) |
| 22 |
6 3 21
|
cif |
|- if ( +oo e. ran x , +oo , sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) ) |
| 23 |
1 2 22
|
cmpt |
|- ( x e. _V |-> if ( +oo e. ran x , +oo , sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) ) ) |
| 24 |
0 23
|
wceq |
|- sum^ = ( x e. _V |-> if ( +oo e. ran x , +oo , sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) ) ) |