Metamath Proof Explorer


Definition df-sumge0

Description: Define the arbitrary sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020) $.

Ref Expression
Assertion df-sumge0
|- sum^ = ( x e. _V |-> if ( +oo e. ran x , +oo , sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csumge0
 |-  sum^
1 vx
 |-  x
2 cvv
 |-  _V
3 cpnf
 |-  +oo
4 1 cv
 |-  x
5 4 crn
 |-  ran x
6 3 5 wcel
 |-  +oo e. ran x
7 vy
 |-  y
8 4 cdm
 |-  dom x
9 8 cpw
 |-  ~P dom x
10 cfn
 |-  Fin
11 9 10 cin
 |-  ( ~P dom x i^i Fin )
12 vw
 |-  w
13 7 cv
 |-  y
14 12 cv
 |-  w
15 14 4 cfv
 |-  ( x ` w )
16 13 15 12 csu
 |-  sum_ w e. y ( x ` w )
17 7 11 16 cmpt
 |-  ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) )
18 17 crn
 |-  ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) )
19 cxr
 |-  RR*
20 clt
 |-  <
21 18 19 20 csup
 |-  sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < )
22 6 3 21 cif
 |-  if ( +oo e. ran x , +oo , sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) )
23 1 2 22 cmpt
 |-  ( x e. _V |-> if ( +oo e. ran x , +oo , sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) ) )
24 0 23 wceq
 |-  sum^ = ( x e. _V |-> if ( +oo e. ran x , +oo , sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) ) )