Step |
Hyp |
Ref |
Expression |
1 |
|
sge0rnre.1 |
|- ( ph -> F : X --> ( 0 [,) +oo ) ) |
2 |
|
elinel2 |
|- ( x e. ( ~P X i^i Fin ) -> x e. Fin ) |
3 |
2
|
adantl |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x e. Fin ) |
4 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
5 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> F : X --> ( 0 [,) +oo ) ) |
6 |
|
elinel1 |
|- ( x e. ( ~P X i^i Fin ) -> x e. ~P X ) |
7 |
|
elpwi |
|- ( x e. ~P X -> x C_ X ) |
8 |
6 7
|
syl |
|- ( x e. ( ~P X i^i Fin ) -> x C_ X ) |
9 |
8
|
adantr |
|- ( ( x e. ( ~P X i^i Fin ) /\ y e. x ) -> x C_ X ) |
10 |
|
simpr |
|- ( ( x e. ( ~P X i^i Fin ) /\ y e. x ) -> y e. x ) |
11 |
9 10
|
sseldd |
|- ( ( x e. ( ~P X i^i Fin ) /\ y e. x ) -> y e. X ) |
12 |
11
|
adantll |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> y e. X ) |
13 |
5 12
|
ffvelrnd |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
14 |
4 13
|
sselid |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. RR ) |
15 |
3 14
|
fsumrecl |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> sum_ y e. x ( F ` y ) e. RR ) |
16 |
15
|
ralrimiva |
|- ( ph -> A. x e. ( ~P X i^i Fin ) sum_ y e. x ( F ` y ) e. RR ) |
17 |
|
eqid |
|- ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) = ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) |
18 |
17
|
rnmptss |
|- ( A. x e. ( ~P X i^i Fin ) sum_ y e. x ( F ` y ) e. RR -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR ) |
19 |
16 18
|
syl |
|- ( ph -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR ) |