Metamath Proof Explorer


Theorem sge0rnre

Description: When sum^ is applied to nonnegative real numbers the range used in its definition is a subset of the reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis sge0rnre.1
|- ( ph -> F : X --> ( 0 [,) +oo ) )
Assertion sge0rnre
|- ( ph -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR )

Proof

Step Hyp Ref Expression
1 sge0rnre.1
 |-  ( ph -> F : X --> ( 0 [,) +oo ) )
2 elinel2
 |-  ( x e. ( ~P X i^i Fin ) -> x e. Fin )
3 2 adantl
 |-  ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x e. Fin )
4 rge0ssre
 |-  ( 0 [,) +oo ) C_ RR
5 1 ad2antrr
 |-  ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> F : X --> ( 0 [,) +oo ) )
6 elinel1
 |-  ( x e. ( ~P X i^i Fin ) -> x e. ~P X )
7 elpwi
 |-  ( x e. ~P X -> x C_ X )
8 6 7 syl
 |-  ( x e. ( ~P X i^i Fin ) -> x C_ X )
9 8 adantr
 |-  ( ( x e. ( ~P X i^i Fin ) /\ y e. x ) -> x C_ X )
10 simpr
 |-  ( ( x e. ( ~P X i^i Fin ) /\ y e. x ) -> y e. x )
11 9 10 sseldd
 |-  ( ( x e. ( ~P X i^i Fin ) /\ y e. x ) -> y e. X )
12 11 adantll
 |-  ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> y e. X )
13 5 12 ffvelrnd
 |-  ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. ( 0 [,) +oo ) )
14 4 13 sselid
 |-  ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. RR )
15 3 14 fsumrecl
 |-  ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> sum_ y e. x ( F ` y ) e. RR )
16 15 ralrimiva
 |-  ( ph -> A. x e. ( ~P X i^i Fin ) sum_ y e. x ( F ` y ) e. RR )
17 eqid
 |-  ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) = ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) )
18 17 rnmptss
 |-  ( A. x e. ( ~P X i^i Fin ) sum_ y e. x ( F ` y ) e. RR -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR )
19 16 18 syl
 |-  ( ph -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR )