Metamath Proof Explorer


Theorem fge0icoicc

Description: If F maps to nonnegative reals, then F maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis fge0icoicc.1
|- ( ph -> F : X --> ( 0 [,) +oo ) )
Assertion fge0icoicc
|- ( ph -> F : X --> ( 0 [,] +oo ) )

Proof

Step Hyp Ref Expression
1 fge0icoicc.1
 |-  ( ph -> F : X --> ( 0 [,) +oo ) )
2 icossicc
 |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo )
3 2 a1i
 |-  ( ph -> ( 0 [,) +oo ) C_ ( 0 [,] +oo ) )
4 1 3 fssd
 |-  ( ph -> F : X --> ( 0 [,] +oo ) )