Metamath Proof Explorer


Theorem fge0icoicc

Description: If F maps to nonnegative reals, then F maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis fge0icoicc.1 ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) )
Assertion fge0icoicc ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )

Proof

Step Hyp Ref Expression
1 fge0icoicc.1 ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) )
2 icossicc ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ )
3 2 a1i ( 𝜑 → ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) )
4 1 3 fssd ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )