Step |
Hyp |
Ref |
Expression |
1 |
|
df-sumge0 |
|- sum^ = ( x e. _V |-> if ( +oo e. ran x , +oo , sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) ) ) |
2 |
1
|
a1i |
|- ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> sum^ = ( x e. _V |-> if ( +oo e. ran x , +oo , sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) ) ) ) |
3 |
|
rneq |
|- ( x = F -> ran x = ran F ) |
4 |
3
|
eleq2d |
|- ( x = F -> ( +oo e. ran x <-> +oo e. ran F ) ) |
5 |
4
|
adantl |
|- ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> ( +oo e. ran x <-> +oo e. ran F ) ) |
6 |
|
dmeq |
|- ( x = F -> dom x = dom F ) |
7 |
6
|
adantl |
|- ( ( F : X --> ( 0 [,] +oo ) /\ x = F ) -> dom x = dom F ) |
8 |
|
fdm |
|- ( F : X --> ( 0 [,] +oo ) -> dom F = X ) |
9 |
8
|
adantr |
|- ( ( F : X --> ( 0 [,] +oo ) /\ x = F ) -> dom F = X ) |
10 |
7 9
|
eqtrd |
|- ( ( F : X --> ( 0 [,] +oo ) /\ x = F ) -> dom x = X ) |
11 |
10
|
pweqd |
|- ( ( F : X --> ( 0 [,] +oo ) /\ x = F ) -> ~P dom x = ~P X ) |
12 |
11
|
ineq1d |
|- ( ( F : X --> ( 0 [,] +oo ) /\ x = F ) -> ( ~P dom x i^i Fin ) = ( ~P X i^i Fin ) ) |
13 |
12
|
mpteq1d |
|- ( ( F : X --> ( 0 [,] +oo ) /\ x = F ) -> ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) = ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( x ` w ) ) ) |
14 |
13
|
adantll |
|- ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) = ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( x ` w ) ) ) |
15 |
|
fveq1 |
|- ( x = F -> ( x ` w ) = ( F ` w ) ) |
16 |
15
|
sumeq2sdv |
|- ( x = F -> sum_ w e. y ( x ` w ) = sum_ w e. y ( F ` w ) ) |
17 |
16
|
mpteq2dv |
|- ( x = F -> ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( x ` w ) ) = ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) ) |
18 |
17
|
adantl |
|- ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( x ` w ) ) = ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) ) |
19 |
14 18
|
eqtrd |
|- ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) = ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) ) |
20 |
19
|
rneqd |
|- ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) = ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) ) |
21 |
20
|
supeq1d |
|- ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) = sup ( ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) , RR* , < ) ) |
22 |
5 21
|
ifbieq2d |
|- ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> if ( +oo e. ran x , +oo , sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) ) = if ( +oo e. ran F , +oo , sup ( ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) , RR* , < ) ) ) |
23 |
|
simpr |
|- ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> F : X --> ( 0 [,] +oo ) ) |
24 |
|
simpl |
|- ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> X e. V ) |
25 |
23 24
|
fexd |
|- ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> F e. _V ) |
26 |
|
pnfxr |
|- +oo e. RR* |
27 |
26
|
a1i |
|- ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> +oo e. RR* ) |
28 |
|
xrltso |
|- < Or RR* |
29 |
28
|
supex |
|- sup ( ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) , RR* , < ) e. _V |
30 |
29
|
a1i |
|- ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> sup ( ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) , RR* , < ) e. _V ) |
31 |
27 30
|
ifexd |
|- ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> if ( +oo e. ran F , +oo , sup ( ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) , RR* , < ) ) e. _V ) |
32 |
2 22 25 31
|
fvmptd |
|- ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> ( sum^ ` F ) = if ( +oo e. ran F , +oo , sup ( ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) , RR* , < ) ) ) |