| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-sumge0 |  |-  sum^ = ( x e. _V |-> if ( +oo e. ran x , +oo , sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) ) ) | 
						
							| 2 | 1 | a1i |  |-  ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> sum^ = ( x e. _V |-> if ( +oo e. ran x , +oo , sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) ) ) ) | 
						
							| 3 |  | rneq |  |-  ( x = F -> ran x = ran F ) | 
						
							| 4 | 3 | eleq2d |  |-  ( x = F -> ( +oo e. ran x <-> +oo e. ran F ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> ( +oo e. ran x <-> +oo e. ran F ) ) | 
						
							| 6 |  | dmeq |  |-  ( x = F -> dom x = dom F ) | 
						
							| 7 | 6 | adantl |  |-  ( ( F : X --> ( 0 [,] +oo ) /\ x = F ) -> dom x = dom F ) | 
						
							| 8 |  | fdm |  |-  ( F : X --> ( 0 [,] +oo ) -> dom F = X ) | 
						
							| 9 | 8 | adantr |  |-  ( ( F : X --> ( 0 [,] +oo ) /\ x = F ) -> dom F = X ) | 
						
							| 10 | 7 9 | eqtrd |  |-  ( ( F : X --> ( 0 [,] +oo ) /\ x = F ) -> dom x = X ) | 
						
							| 11 | 10 | pweqd |  |-  ( ( F : X --> ( 0 [,] +oo ) /\ x = F ) -> ~P dom x = ~P X ) | 
						
							| 12 | 11 | ineq1d |  |-  ( ( F : X --> ( 0 [,] +oo ) /\ x = F ) -> ( ~P dom x i^i Fin ) = ( ~P X i^i Fin ) ) | 
						
							| 13 | 12 | mpteq1d |  |-  ( ( F : X --> ( 0 [,] +oo ) /\ x = F ) -> ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) = ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( x ` w ) ) ) | 
						
							| 14 | 13 | adantll |  |-  ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) = ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( x ` w ) ) ) | 
						
							| 15 |  | fveq1 |  |-  ( x = F -> ( x ` w ) = ( F ` w ) ) | 
						
							| 16 | 15 | sumeq2sdv |  |-  ( x = F -> sum_ w e. y ( x ` w ) = sum_ w e. y ( F ` w ) ) | 
						
							| 17 | 16 | mpteq2dv |  |-  ( x = F -> ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( x ` w ) ) = ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( x ` w ) ) = ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) ) | 
						
							| 19 | 14 18 | eqtrd |  |-  ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) = ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) ) | 
						
							| 20 | 19 | rneqd |  |-  ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) = ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) ) | 
						
							| 21 | 20 | supeq1d |  |-  ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) = sup ( ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) , RR* , < ) ) | 
						
							| 22 | 5 21 | ifbieq2d |  |-  ( ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) /\ x = F ) -> if ( +oo e. ran x , +oo , sup ( ran ( y e. ( ~P dom x i^i Fin ) |-> sum_ w e. y ( x ` w ) ) , RR* , < ) ) = if ( +oo e. ran F , +oo , sup ( ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) , RR* , < ) ) ) | 
						
							| 23 |  | simpr |  |-  ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> F : X --> ( 0 [,] +oo ) ) | 
						
							| 24 |  | simpl |  |-  ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> X e. V ) | 
						
							| 25 | 23 24 | fexd |  |-  ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> F e. _V ) | 
						
							| 26 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 27 | 26 | a1i |  |-  ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> +oo e. RR* ) | 
						
							| 28 |  | xrltso |  |-  < Or RR* | 
						
							| 29 | 28 | supex |  |-  sup ( ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) , RR* , < ) e. _V | 
						
							| 30 | 29 | a1i |  |-  ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> sup ( ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) , RR* , < ) e. _V ) | 
						
							| 31 | 27 30 | ifexd |  |-  ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> if ( +oo e. ran F , +oo , sup ( ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) , RR* , < ) ) e. _V ) | 
						
							| 32 | 2 22 25 31 | fvmptd |  |-  ( ( X e. V /\ F : X --> ( 0 [,] +oo ) ) -> ( sum^ ` F ) = if ( +oo e. ran F , +oo , sup ( ran ( y e. ( ~P X i^i Fin ) |-> sum_ w e. y ( F ` w ) ) , RR* , < ) ) ) |