Metamath Proof Explorer


Theorem sge0rnre

Description: When sum^ is applied to nonnegative real numbers the range used in its definition is a subset of the reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis sge0rnre.1 ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) )
Assertion sge0rnre ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) ⊆ ℝ )

Proof

Step Hyp Ref Expression
1 sge0rnre.1 ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) )
2 elinel2 ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ Fin )
3 2 adantl ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ Fin )
4 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
5 1 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) )
6 elinel1 ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ 𝒫 𝑋 )
7 elpwi ( 𝑥 ∈ 𝒫 𝑋𝑥𝑋 )
8 6 7 syl ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥𝑋 )
9 8 adantr ( ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦𝑥 ) → 𝑥𝑋 )
10 simpr ( ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦𝑥 ) → 𝑦𝑥 )
11 9 10 sseldd ( ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦𝑥 ) → 𝑦𝑋 )
12 11 adantll ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → 𝑦𝑋 )
13 5 12 ffvelrnd ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → ( 𝐹𝑦 ) ∈ ( 0 [,) +∞ ) )
14 4 13 sseldi ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → ( 𝐹𝑦 ) ∈ ℝ )
15 3 14 fsumrecl ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑦𝑥 ( 𝐹𝑦 ) ∈ ℝ )
16 15 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) Σ 𝑦𝑥 ( 𝐹𝑦 ) ∈ ℝ )
17 eqid ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) )
18 17 rnmptss ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) Σ 𝑦𝑥 ( 𝐹𝑦 ) ∈ ℝ → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) ⊆ ℝ )
19 16 18 syl ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) ⊆ ℝ )