Metamath Proof Explorer


Theorem elini

Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses elini.1
|- A e. B
elini.2
|- A e. C
Assertion elini
|- A e. ( B i^i C )

Proof

Step Hyp Ref Expression
1 elini.1
 |-  A e. B
2 elini.2
 |-  A e. C
3 elin
 |-  ( A e. ( B i^i C ) <-> ( A e. B /\ A e. C ) )
4 1 2 3 mpbir2an
 |-  A e. ( B i^i C )