Metamath Proof Explorer


Theorem sge0reval

Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0reval.x φXV
sge0reval.f φF:X0+∞
Assertion sge0reval φsum^F=supranx𝒫XFinyxFy*<

Proof

Step Hyp Ref Expression
1 sge0reval.x φXV
2 sge0reval.f φF:X0+∞
3 2 fge0icoicc φF:X0+∞
4 1 3 sge0vald φsum^F=if+∞ranF+∞supranx𝒫XFinyxFy*<
5 2 fge0npnf φ¬+∞ranF
6 5 iffalsed φif+∞ranF+∞supranx𝒫XFinyxFy*<=supranx𝒫XFinyxFy*<
7 4 6 eqtrd φsum^F=supranx𝒫XFinyxFy*<