Metamath Proof Explorer


Theorem sge0reval

Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0reval.x φ X V
sge0reval.f φ F : X 0 +∞
Assertion sge0reval φ sum^ F = sup ran x 𝒫 X Fin y x F y * <

Proof

Step Hyp Ref Expression
1 sge0reval.x φ X V
2 sge0reval.f φ F : X 0 +∞
3 2 fge0icoicc φ F : X 0 +∞
4 1 3 sge0vald φ sum^ F = if +∞ ran F +∞ sup ran x 𝒫 X Fin y x F y * <
5 2 fge0npnf φ ¬ +∞ ran F
6 5 iffalsed φ if +∞ ran F +∞ sup ran x 𝒫 X Fin y x F y * < = sup ran x 𝒫 X Fin y x F y * <
7 4 6 eqtrd φ sum^ F = sup ran x 𝒫 X Fin y x F y * <