Metamath Proof Explorer


Theorem sge0pnfval

Description: If a term in the sum of nonnegative extended reals is +oo , then the value of the sum is +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0pnfval.x φ X V
sge0pnfval.f φ F : X 0 +∞
sge0pnfval.pnf φ +∞ ran F
Assertion sge0pnfval φ sum^ F = +∞

Proof

Step Hyp Ref Expression
1 sge0pnfval.x φ X V
2 sge0pnfval.f φ F : X 0 +∞
3 sge0pnfval.pnf φ +∞ ran F
4 1 2 sge0vald φ sum^ F = if +∞ ran F +∞ sup ran x 𝒫 X Fin y x F y * <
5 3 iftrued φ if +∞ ran F +∞ sup ran x 𝒫 X Fin y x F y * < = +∞
6 4 5 eqtrd φ sum^ F = +∞