Metamath Proof Explorer


Definition df-sumge0

Description: Define the arbitrary sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020) $.

Ref Expression
Assertion df-sumge0 sum^=xVif+∞ranx+∞suprany𝒫domxFinwyxw*<

Detailed syntax breakdown

Step Hyp Ref Expression
0 csumge0 classsum^
1 vx setvarx
2 cvv classV
3 cpnf class+∞
4 1 cv setvarx
5 4 crn classranx
6 3 5 wcel wff+∞ranx
7 vy setvary
8 4 cdm classdomx
9 8 cpw class𝒫domx
10 cfn classFin
11 9 10 cin class𝒫domxFin
12 vw setvarw
13 7 cv setvary
14 12 cv setvarw
15 14 4 cfv classxw
16 13 15 12 csu classwyxw
17 7 11 16 cmpt classy𝒫domxFinwyxw
18 17 crn classrany𝒫domxFinwyxw
19 cxr class*
20 clt class<
21 18 19 20 csup classsuprany𝒫domxFinwyxw*<
22 6 3 21 cif classif+∞ranx+∞suprany𝒫domxFinwyxw*<
23 1 2 22 cmpt classxVif+∞ranx+∞suprany𝒫domxFinwyxw*<
24 0 23 wceq wffsum^=xVif+∞ranx+∞suprany𝒫domxFinwyxw*<