| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumge0cl.1 |
|
| 2 |
|
gsumge0cl.2 |
|
| 3 |
|
gsumge0cl.3 |
|
| 4 |
|
gsumge0cl.4 |
|
| 5 |
|
iccssxr |
|
| 6 |
|
dfss2 |
|
| 7 |
5 6
|
mpbi |
|
| 8 |
7
|
eqcomi |
|
| 9 |
|
ovex |
|
| 10 |
|
xrsbas |
|
| 11 |
1 10
|
ressbas |
|
| 12 |
9 11
|
ax-mp |
|
| 13 |
8 12
|
eqtri |
|
| 14 |
|
eqid |
|
| 15 |
14
|
xrs1cmn |
|
| 16 |
|
cmnmnd |
|
| 17 |
15 16
|
ax-mp |
|
| 18 |
|
xrge0cmn |
|
| 19 |
1 18
|
eqeltri |
|
| 20 |
|
cmnmnd |
|
| 21 |
19 20
|
ax-mp |
|
| 22 |
17 21
|
pm3.2i |
|
| 23 |
|
eliccxr |
|
| 24 |
|
mnfxr |
|
| 25 |
24
|
a1i |
|
| 26 |
|
0xr |
|
| 27 |
26
|
a1i |
|
| 28 |
|
mnflt0 |
|
| 29 |
28
|
a1i |
|
| 30 |
|
pnfxr |
|
| 31 |
30
|
a1i |
|
| 32 |
|
id |
|
| 33 |
|
iccgelb |
|
| 34 |
27 31 32 33
|
syl3anc |
|
| 35 |
25 27 23 29 34
|
xrltletrd |
|
| 36 |
25 23 35
|
xrgtned |
|
| 37 |
|
nelsn |
|
| 38 |
36 37
|
syl |
|
| 39 |
23 38
|
eldifd |
|
| 40 |
39
|
rgen |
|
| 41 |
|
dfss3 |
|
| 42 |
40 41
|
mpbir |
|
| 43 |
|
0e0iccpnf |
|
| 44 |
42 43
|
pm3.2i |
|
| 45 |
|
difss |
|
| 46 |
14 10
|
ressbas2 |
|
| 47 |
45 46
|
ax-mp |
|
| 48 |
14
|
xrs10 |
|
| 49 |
|
xrex |
|
| 50 |
|
difexg |
|
| 51 |
49 50
|
ax-mp |
|
| 52 |
44
|
simpli |
|
| 53 |
|
ressabs |
|
| 54 |
51 52 53
|
mp2an |
|
| 55 |
1
|
eqcomi |
|
| 56 |
54 55
|
eqtr2i |
|
| 57 |
47 48 56
|
submnd0 |
|
| 58 |
22 44 57
|
mp2an |
|
| 59 |
19
|
a1i |
|
| 60 |
13 58 59 2 3 4
|
gsumcl |
|