Metamath Proof Explorer


Theorem gsumge0cl

Description: Closure of group sum, for finitely supported nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses gsumge0cl.1 G=𝑠*𝑠0+∞
gsumge0cl.2 φXV
gsumge0cl.3 φF:X0+∞
gsumge0cl.4 φfinSupp0F
Assertion gsumge0cl φGF0+∞

Proof

Step Hyp Ref Expression
1 gsumge0cl.1 G=𝑠*𝑠0+∞
2 gsumge0cl.2 φXV
3 gsumge0cl.3 φF:X0+∞
4 gsumge0cl.4 φfinSupp0F
5 iccssxr 0+∞*
6 df-ss 0+∞*0+∞*=0+∞
7 5 6 mpbi 0+∞*=0+∞
8 7 eqcomi 0+∞=0+∞*
9 ovex 0+∞V
10 xrsbas *=Base𝑠*
11 1 10 ressbas 0+∞V0+∞*=BaseG
12 9 11 ax-mp 0+∞*=BaseG
13 8 12 eqtri 0+∞=BaseG
14 eqid 𝑠*𝑠*−∞=𝑠*𝑠*−∞
15 14 xrs1cmn 𝑠*𝑠*−∞CMnd
16 cmnmnd 𝑠*𝑠*−∞CMnd𝑠*𝑠*−∞Mnd
17 15 16 ax-mp 𝑠*𝑠*−∞Mnd
18 xrge0cmn 𝑠*𝑠0+∞CMnd
19 1 18 eqeltri GCMnd
20 cmnmnd GCMndGMnd
21 19 20 ax-mp GMnd
22 17 21 pm3.2i 𝑠*𝑠*−∞MndGMnd
23 eliccxr x0+∞x*
24 mnfxr −∞*
25 24 a1i x0+∞−∞*
26 0xr 0*
27 26 a1i x0+∞0*
28 mnflt0 −∞<0
29 28 a1i x0+∞−∞<0
30 pnfxr +∞*
31 30 a1i x0+∞+∞*
32 id x0+∞x0+∞
33 iccgelb 0*+∞*x0+∞0x
34 27 31 32 33 syl3anc x0+∞0x
35 25 27 23 29 34 xrltletrd x0+∞−∞<x
36 25 23 35 xrgtned x0+∞x−∞
37 nelsn x−∞¬x−∞
38 36 37 syl x0+∞¬x−∞
39 23 38 eldifd x0+∞x*−∞
40 39 rgen x0+∞x*−∞
41 dfss3 0+∞*−∞x0+∞x*−∞
42 40 41 mpbir 0+∞*−∞
43 0e0iccpnf 00+∞
44 42 43 pm3.2i 0+∞*−∞00+∞
45 difss *−∞*
46 14 10 ressbas2 *−∞**−∞=Base𝑠*𝑠*−∞
47 45 46 ax-mp *−∞=Base𝑠*𝑠*−∞
48 14 xrs10 0=0𝑠*𝑠*−∞
49 xrex *V
50 difexg *V*−∞V
51 49 50 ax-mp *−∞V
52 44 simpli 0+∞*−∞
53 ressabs *−∞V0+∞*−∞𝑠*𝑠*−∞𝑠0+∞=𝑠*𝑠0+∞
54 51 52 53 mp2an 𝑠*𝑠*−∞𝑠0+∞=𝑠*𝑠0+∞
55 1 eqcomi 𝑠*𝑠0+∞=G
56 54 55 eqtr2i G=𝑠*𝑠*−∞𝑠0+∞
57 47 48 56 submnd0 𝑠*𝑠*−∞MndGMnd0+∞*−∞00+∞0=0G
58 22 44 57 mp2an 0=0G
59 19 a1i φGCMnd
60 13 58 59 2 3 4 gsumcl φGF0+∞