Step |
Hyp |
Ref |
Expression |
1 |
|
gsumge0cl.1 |
|
2 |
|
gsumge0cl.2 |
|
3 |
|
gsumge0cl.3 |
|
4 |
|
gsumge0cl.4 |
|
5 |
|
iccssxr |
|
6 |
|
df-ss |
|
7 |
5 6
|
mpbi |
|
8 |
7
|
eqcomi |
|
9 |
|
ovex |
|
10 |
|
xrsbas |
|
11 |
1 10
|
ressbas |
|
12 |
9 11
|
ax-mp |
|
13 |
8 12
|
eqtri |
|
14 |
|
eqid |
|
15 |
14
|
xrs1cmn |
|
16 |
|
cmnmnd |
|
17 |
15 16
|
ax-mp |
|
18 |
|
xrge0cmn |
|
19 |
1 18
|
eqeltri |
|
20 |
|
cmnmnd |
|
21 |
19 20
|
ax-mp |
|
22 |
17 21
|
pm3.2i |
|
23 |
|
eliccxr |
|
24 |
|
mnfxr |
|
25 |
24
|
a1i |
|
26 |
|
0xr |
|
27 |
26
|
a1i |
|
28 |
|
mnflt0 |
|
29 |
28
|
a1i |
|
30 |
|
pnfxr |
|
31 |
30
|
a1i |
|
32 |
|
id |
|
33 |
|
iccgelb |
|
34 |
27 31 32 33
|
syl3anc |
|
35 |
25 27 23 29 34
|
xrltletrd |
|
36 |
25 23 35
|
xrgtned |
|
37 |
|
nelsn |
|
38 |
36 37
|
syl |
|
39 |
23 38
|
eldifd |
|
40 |
39
|
rgen |
|
41 |
|
dfss3 |
|
42 |
40 41
|
mpbir |
|
43 |
|
0e0iccpnf |
|
44 |
42 43
|
pm3.2i |
|
45 |
|
difss |
|
46 |
14 10
|
ressbas2 |
|
47 |
45 46
|
ax-mp |
|
48 |
14
|
xrs10 |
|
49 |
|
xrex |
|
50 |
|
difexg |
|
51 |
49 50
|
ax-mp |
|
52 |
44
|
simpli |
|
53 |
|
ressabs |
|
54 |
51 52 53
|
mp2an |
|
55 |
1
|
eqcomi |
|
56 |
54 55
|
eqtr2i |
|
57 |
47 48 56
|
submnd0 |
|
58 |
22 44 57
|
mp2an |
|
59 |
19
|
a1i |
|
60 |
13 58 59 2 3 4
|
gsumcl |
|