Metamath Proof Explorer


Theorem xrs1cmn

Description: The extended real numbers restricted to RR* \ { -oo } form a commutative monoid. They are not a group because 1 + +oo = 2 + +oo even though 1 =/= 2 . (Contributed by Mario Carneiro, 27-Nov-2014)

Ref Expression
Hypothesis xrs1mnd.1 R=𝑠*𝑠*−∞
Assertion xrs1cmn RCMnd

Proof

Step Hyp Ref Expression
1 xrs1mnd.1 R=𝑠*𝑠*−∞
2 1 xrs1mnd RMnd
3 eldifi x*−∞x*
4 eldifi y*−∞y*
5 xaddcom x*y*x+𝑒y=y+𝑒x
6 3 4 5 syl2an x*−∞y*−∞x+𝑒y=y+𝑒x
7 6 rgen2 x*−∞y*−∞x+𝑒y=y+𝑒x
8 difss *−∞*
9 xrsbas *=Base𝑠*
10 1 9 ressbas2 *−∞**−∞=BaseR
11 8 10 ax-mp *−∞=BaseR
12 xrex *V
13 12 difexi *−∞V
14 xrsadd +𝑒=+𝑠*
15 1 14 ressplusg *−∞V+𝑒=+R
16 13 15 ax-mp +𝑒=+R
17 11 16 iscmn RCMndRMndx*−∞y*−∞x+𝑒y=y+𝑒x
18 2 7 17 mpbir2an RCMnd