Metamath Proof Explorer


Theorem xaddcom

Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011)

Ref Expression
Assertion xaddcom A * B * A + 𝑒 B = B + 𝑒 A

Proof

Step Hyp Ref Expression
1 elxr A * A A = +∞ A = −∞
2 elxr B * B B = +∞ B = −∞
3 recn A A
4 recn B B
5 addcom A B A + B = B + A
6 3 4 5 syl2an A B A + B = B + A
7 rexadd A B A + 𝑒 B = A + B
8 rexadd B A B + 𝑒 A = B + A
9 8 ancoms A B B + 𝑒 A = B + A
10 6 7 9 3eqtr4d A B A + 𝑒 B = B + 𝑒 A
11 oveq2 B = +∞ A + 𝑒 B = A + 𝑒 +∞
12 rexr A A *
13 renemnf A A −∞
14 xaddpnf1 A * A −∞ A + 𝑒 +∞ = +∞
15 12 13 14 syl2anc A A + 𝑒 +∞ = +∞
16 11 15 sylan9eqr A B = +∞ A + 𝑒 B = +∞
17 oveq1 B = +∞ B + 𝑒 A = +∞ + 𝑒 A
18 xaddpnf2 A * A −∞ +∞ + 𝑒 A = +∞
19 12 13 18 syl2anc A +∞ + 𝑒 A = +∞
20 17 19 sylan9eqr A B = +∞ B + 𝑒 A = +∞
21 16 20 eqtr4d A B = +∞ A + 𝑒 B = B + 𝑒 A
22 oveq2 B = −∞ A + 𝑒 B = A + 𝑒 −∞
23 renepnf A A +∞
24 xaddmnf1 A * A +∞ A + 𝑒 −∞ = −∞
25 12 23 24 syl2anc A A + 𝑒 −∞ = −∞
26 22 25 sylan9eqr A B = −∞ A + 𝑒 B = −∞
27 oveq1 B = −∞ B + 𝑒 A = −∞ + 𝑒 A
28 xaddmnf2 A * A +∞ −∞ + 𝑒 A = −∞
29 12 23 28 syl2anc A −∞ + 𝑒 A = −∞
30 27 29 sylan9eqr A B = −∞ B + 𝑒 A = −∞
31 26 30 eqtr4d A B = −∞ A + 𝑒 B = B + 𝑒 A
32 10 21 31 3jaodan A B B = +∞ B = −∞ A + 𝑒 B = B + 𝑒 A
33 2 32 sylan2b A B * A + 𝑒 B = B + 𝑒 A
34 pnfaddmnf +∞ + 𝑒 −∞ = 0
35 mnfaddpnf −∞ + 𝑒 +∞ = 0
36 34 35 eqtr4i +∞ + 𝑒 −∞ = −∞ + 𝑒 +∞
37 simpr B * B = −∞ B = −∞
38 37 oveq2d B * B = −∞ +∞ + 𝑒 B = +∞ + 𝑒 −∞
39 37 oveq1d B * B = −∞ B + 𝑒 +∞ = −∞ + 𝑒 +∞
40 36 38 39 3eqtr4a B * B = −∞ +∞ + 𝑒 B = B + 𝑒 +∞
41 xaddpnf2 B * B −∞ +∞ + 𝑒 B = +∞
42 xaddpnf1 B * B −∞ B + 𝑒 +∞ = +∞
43 41 42 eqtr4d B * B −∞ +∞ + 𝑒 B = B + 𝑒 +∞
44 40 43 pm2.61dane B * +∞ + 𝑒 B = B + 𝑒 +∞
45 44 adantl A = +∞ B * +∞ + 𝑒 B = B + 𝑒 +∞
46 simpl A = +∞ B * A = +∞
47 46 oveq1d A = +∞ B * A + 𝑒 B = +∞ + 𝑒 B
48 46 oveq2d A = +∞ B * B + 𝑒 A = B + 𝑒 +∞
49 45 47 48 3eqtr4d A = +∞ B * A + 𝑒 B = B + 𝑒 A
50 35 34 eqtr4i −∞ + 𝑒 +∞ = +∞ + 𝑒 −∞
51 simpr B * B = +∞ B = +∞
52 51 oveq2d B * B = +∞ −∞ + 𝑒 B = −∞ + 𝑒 +∞
53 51 oveq1d B * B = +∞ B + 𝑒 −∞ = +∞ + 𝑒 −∞
54 50 52 53 3eqtr4a B * B = +∞ −∞ + 𝑒 B = B + 𝑒 −∞
55 xaddmnf2 B * B +∞ −∞ + 𝑒 B = −∞
56 xaddmnf1 B * B +∞ B + 𝑒 −∞ = −∞
57 55 56 eqtr4d B * B +∞ −∞ + 𝑒 B = B + 𝑒 −∞
58 54 57 pm2.61dane B * −∞ + 𝑒 B = B + 𝑒 −∞
59 58 adantl A = −∞ B * −∞ + 𝑒 B = B + 𝑒 −∞
60 simpl A = −∞ B * A = −∞
61 60 oveq1d A = −∞ B * A + 𝑒 B = −∞ + 𝑒 B
62 60 oveq2d A = −∞ B * B + 𝑒 A = B + 𝑒 −∞
63 59 61 62 3eqtr4d A = −∞ B * A + 𝑒 B = B + 𝑒 A
64 33 49 63 3jaoian A A = +∞ A = −∞ B * A + 𝑒 B = B + 𝑒 A
65 1 64 sylanb A * B * A + 𝑒 B = B + 𝑒 A