Metamath Proof Explorer


Theorem xaddpnf1

Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddpnf1 A*A−∞A+𝑒+∞=+∞

Proof

Step Hyp Ref Expression
1 pnfxr +∞*
2 xaddval A*+∞*A+𝑒+∞=ifA=+∞if+∞=−∞0+∞ifA=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞A++∞
3 1 2 mpan2 A*A+𝑒+∞=ifA=+∞if+∞=−∞0+∞ifA=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞A++∞
4 pnfnemnf +∞−∞
5 ifnefalse +∞−∞if+∞=−∞0+∞=+∞
6 4 5 mp1i A−∞if+∞=−∞0+∞=+∞
7 ifnefalse A−∞ifA=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞A++∞=if+∞=+∞+∞if+∞=−∞−∞A++∞
8 eqid +∞=+∞
9 8 iftruei if+∞=+∞+∞if+∞=−∞−∞A++∞=+∞
10 7 9 eqtrdi A−∞ifA=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞A++∞=+∞
11 6 10 ifeq12d A−∞ifA=+∞if+∞=−∞0+∞ifA=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞A++∞=ifA=+∞+∞+∞
12 ifid ifA=+∞+∞+∞=+∞
13 11 12 eqtrdi A−∞ifA=+∞if+∞=−∞0+∞ifA=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞A++∞=+∞
14 3 13 sylan9eq A*A−∞A+𝑒+∞=+∞