Metamath Proof Explorer


Theorem xaddpnf2

Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddpnf2 A*A−∞+∞+𝑒A=+∞

Proof

Step Hyp Ref Expression
1 pnfxr +∞*
2 xaddval +∞*A*+∞+𝑒A=if+∞=+∞ifA=−∞0+∞if+∞=−∞ifA=+∞0−∞ifA=+∞+∞ifA=−∞−∞+∞+A
3 1 2 mpan A*+∞+𝑒A=if+∞=+∞ifA=−∞0+∞if+∞=−∞ifA=+∞0−∞ifA=+∞+∞ifA=−∞−∞+∞+A
4 eqid +∞=+∞
5 4 iftruei if+∞=+∞ifA=−∞0+∞if+∞=−∞ifA=+∞0−∞ifA=+∞+∞ifA=−∞−∞+∞+A=ifA=−∞0+∞
6 ifnefalse A−∞ifA=−∞0+∞=+∞
7 5 6 eqtrid A−∞if+∞=+∞ifA=−∞0+∞if+∞=−∞ifA=+∞0−∞ifA=+∞+∞ifA=−∞−∞+∞+A=+∞
8 3 7 sylan9eq A*A−∞+∞+𝑒A=+∞