Metamath Proof Explorer


Theorem xaddmnf1

Description: Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddmnf1 A*A+∞A+𝑒−∞=−∞

Proof

Step Hyp Ref Expression
1 mnfxr −∞*
2 xaddval A*−∞*A+𝑒−∞=ifA=+∞if−∞=−∞0+∞ifA=−∞if−∞=+∞0−∞if−∞=+∞+∞if−∞=−∞−∞A+−∞
3 1 2 mpan2 A*A+𝑒−∞=ifA=+∞if−∞=−∞0+∞ifA=−∞if−∞=+∞0−∞if−∞=+∞+∞if−∞=−∞−∞A+−∞
4 ifnefalse A+∞ifA=+∞if−∞=−∞0+∞ifA=−∞if−∞=+∞0−∞if−∞=+∞+∞if−∞=−∞−∞A+−∞=ifA=−∞if−∞=+∞0−∞if−∞=+∞+∞if−∞=−∞−∞A+−∞
5 mnfnepnf −∞+∞
6 ifnefalse −∞+∞if−∞=+∞0−∞=−∞
7 5 6 ax-mp if−∞=+∞0−∞=−∞
8 ifnefalse −∞+∞if−∞=+∞+∞if−∞=−∞−∞A+−∞=if−∞=−∞−∞A+−∞
9 5 8 ax-mp if−∞=+∞+∞if−∞=−∞−∞A+−∞=if−∞=−∞−∞A+−∞
10 eqid −∞=−∞
11 10 iftruei if−∞=−∞−∞A+−∞=−∞
12 9 11 eqtri if−∞=+∞+∞if−∞=−∞−∞A+−∞=−∞
13 ifeq12 if−∞=+∞0−∞=−∞if−∞=+∞+∞if−∞=−∞−∞A+−∞=−∞ifA=−∞if−∞=+∞0−∞if−∞=+∞+∞if−∞=−∞−∞A+−∞=ifA=−∞−∞−∞
14 7 12 13 mp2an ifA=−∞if−∞=+∞0−∞if−∞=+∞+∞if−∞=−∞−∞A+−∞=ifA=−∞−∞−∞
15 ifid ifA=−∞−∞−∞=−∞
16 14 15 eqtri ifA=−∞if−∞=+∞0−∞if−∞=+∞+∞if−∞=−∞−∞A+−∞=−∞
17 4 16 eqtrdi A+∞ifA=+∞if−∞=−∞0+∞ifA=−∞if−∞=+∞0−∞if−∞=+∞+∞if−∞=−∞−∞A+−∞=−∞
18 3 17 sylan9eq A*A+∞A+𝑒−∞=−∞