Metamath Proof Explorer


Theorem xrs1mnd

Description: The extended real numbers, restricted to RR* \ { -oo } , form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp . (Contributed by Mario Carneiro, 27-Nov-2014)

Ref Expression
Hypothesis xrs1mnd.1 R=𝑠*𝑠*−∞
Assertion xrs1mnd RMnd

Proof

Step Hyp Ref Expression
1 xrs1mnd.1 R=𝑠*𝑠*−∞
2 difss *−∞*
3 xrsbas *=Base𝑠*
4 1 3 ressbas2 *−∞**−∞=BaseR
5 2 4 mp1i *−∞=BaseR
6 xrex *V
7 6 difexi *−∞V
8 xrsadd +𝑒=+𝑠*
9 1 8 ressplusg *−∞V+𝑒=+R
10 7 9 mp1i +𝑒=+R
11 eldifsn x*−∞x*x−∞
12 eldifsn y*−∞y*y−∞
13 xaddcl x*y*x+𝑒y*
14 13 ad2ant2r x*x−∞y*y−∞x+𝑒y*
15 xaddnemnf x*x−∞y*y−∞x+𝑒y−∞
16 eldifsn x+𝑒y*−∞x+𝑒y*x+𝑒y−∞
17 14 15 16 sylanbrc x*x−∞y*y−∞x+𝑒y*−∞
18 11 12 17 syl2anb x*−∞y*−∞x+𝑒y*−∞
19 18 3adant1 x*−∞y*−∞x+𝑒y*−∞
20 eldifsn z*−∞z*z−∞
21 xaddass x*x−∞y*y−∞z*z−∞x+𝑒y+𝑒z=x+𝑒y+𝑒z
22 11 12 20 21 syl3anb x*−∞y*−∞z*−∞x+𝑒y+𝑒z=x+𝑒y+𝑒z
23 22 adantl x*−∞y*−∞z*−∞x+𝑒y+𝑒z=x+𝑒y+𝑒z
24 0re 0
25 rexr 00*
26 renemnf 00−∞
27 eldifsn 0*−∞0*0−∞
28 25 26 27 sylanbrc 00*−∞
29 24 28 mp1i 0*−∞
30 eldifi x*−∞x*
31 30 adantl x*−∞x*
32 xaddlid x*0+𝑒x=x
33 31 32 syl x*−∞0+𝑒x=x
34 31 xaddridd x*−∞x+𝑒0=x
35 5 10 19 23 29 33 34 ismndd RMnd
36 35 mptru RMnd