Step |
Hyp |
Ref |
Expression |
1 |
|
fge0iccico.f |
|
2 |
|
fge0iccico.re |
|
3 |
1
|
ffnd |
|
4 |
|
0xr |
|
5 |
4
|
a1i |
|
6 |
|
pnfxr |
|
7 |
6
|
a1i |
|
8 |
|
iccssxr |
|
9 |
1
|
ffvelrnda |
|
10 |
8 9
|
sselid |
|
11 |
|
iccgelb |
|
12 |
5 7 9 11
|
syl3anc |
|
13 |
10
|
adantr |
|
14 |
|
simpr |
|
15 |
6
|
a1i |
|
16 |
15 13
|
xrlenltd |
|
17 |
14 16
|
mpbird |
|
18 |
13 17
|
xrgepnfd |
|
19 |
18
|
eqcomd |
|
20 |
1
|
ffund |
|
21 |
20
|
adantr |
|
22 |
|
simpr |
|
23 |
|
fdm |
|
24 |
23
|
eqcomd |
|
25 |
1 24
|
syl |
|
26 |
25
|
adantr |
|
27 |
22 26
|
eleqtrd |
|
28 |
|
fvelrn |
|
29 |
21 27 28
|
syl2anc |
|
30 |
29
|
adantr |
|
31 |
19 30
|
eqeltrd |
|
32 |
2
|
ad2antrr |
|
33 |
31 32
|
condan |
|
34 |
5 7 10 12 33
|
elicod |
|
35 |
34
|
ralrimiva |
|
36 |
3 35
|
jca |
|
37 |
|
ffnfv |
|
38 |
36 37
|
sylibr |
|