Metamath Proof Explorer


Theorem fge0iccico

Description: A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fge0iccico.f φ F : X 0 +∞
fge0iccico.re φ ¬ +∞ ran F
Assertion fge0iccico φ F : X 0 +∞

Proof

Step Hyp Ref Expression
1 fge0iccico.f φ F : X 0 +∞
2 fge0iccico.re φ ¬ +∞ ran F
3 1 ffnd φ F Fn X
4 0xr 0 *
5 4 a1i φ x X 0 *
6 pnfxr +∞ *
7 6 a1i φ x X +∞ *
8 iccssxr 0 +∞ *
9 1 ffvelrnda φ x X F x 0 +∞
10 8 9 sseldi φ x X F x *
11 iccgelb 0 * +∞ * F x 0 +∞ 0 F x
12 5 7 9 11 syl3anc φ x X 0 F x
13 10 adantr φ x X ¬ F x < +∞ F x *
14 simpr φ x X ¬ F x < +∞ ¬ F x < +∞
15 6 a1i φ x X ¬ F x < +∞ +∞ *
16 15 13 xrlenltd φ x X ¬ F x < +∞ +∞ F x ¬ F x < +∞
17 14 16 mpbird φ x X ¬ F x < +∞ +∞ F x
18 13 17 xrgepnfd φ x X ¬ F x < +∞ F x = +∞
19 18 eqcomd φ x X ¬ F x < +∞ +∞ = F x
20 1 ffund φ Fun F
21 20 adantr φ x X Fun F
22 simpr φ x X x X
23 fdm F : X 0 +∞ dom F = X
24 23 eqcomd F : X 0 +∞ X = dom F
25 1 24 syl φ X = dom F
26 25 adantr φ x X X = dom F
27 22 26 eleqtrd φ x X x dom F
28 fvelrn Fun F x dom F F x ran F
29 21 27 28 syl2anc φ x X F x ran F
30 29 adantr φ x X ¬ F x < +∞ F x ran F
31 19 30 eqeltrd φ x X ¬ F x < +∞ +∞ ran F
32 2 ad2antrr φ x X ¬ F x < +∞ ¬ +∞ ran F
33 31 32 condan φ x X F x < +∞
34 5 7 10 12 33 elicod φ x X F x 0 +∞
35 34 ralrimiva φ x X F x 0 +∞
36 3 35 jca φ F Fn X x X F x 0 +∞
37 ffnfv F : X 0 +∞ F Fn X x X F x 0 +∞
38 36 37 sylibr φ F : X 0 +∞