| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fge0iccico.f |
|
| 2 |
|
fge0iccico.re |
|
| 3 |
1
|
ffnd |
|
| 4 |
|
0xr |
|
| 5 |
4
|
a1i |
|
| 6 |
|
pnfxr |
|
| 7 |
6
|
a1i |
|
| 8 |
|
iccssxr |
|
| 9 |
1
|
ffvelcdmda |
|
| 10 |
8 9
|
sselid |
|
| 11 |
|
iccgelb |
|
| 12 |
5 7 9 11
|
syl3anc |
|
| 13 |
10
|
adantr |
|
| 14 |
|
simpr |
|
| 15 |
6
|
a1i |
|
| 16 |
15 13
|
xrlenltd |
|
| 17 |
14 16
|
mpbird |
|
| 18 |
13 17
|
xrgepnfd |
|
| 19 |
18
|
eqcomd |
|
| 20 |
1
|
ffund |
|
| 21 |
20
|
adantr |
|
| 22 |
|
simpr |
|
| 23 |
|
fdm |
|
| 24 |
23
|
eqcomd |
|
| 25 |
1 24
|
syl |
|
| 26 |
25
|
adantr |
|
| 27 |
22 26
|
eleqtrd |
|
| 28 |
|
fvelrn |
|
| 29 |
21 27 28
|
syl2anc |
|
| 30 |
29
|
adantr |
|
| 31 |
19 30
|
eqeltrd |
|
| 32 |
2
|
ad2antrr |
|
| 33 |
31 32
|
condan |
|
| 34 |
5 7 10 12 33
|
elicod |
|
| 35 |
34
|
ralrimiva |
|
| 36 |
3 35
|
jca |
|
| 37 |
|
ffnfv |
|
| 38 |
36 37
|
sylibr |
|