Metamath Proof Explorer


Theorem xrgepnfd

Description: An extended real greater than or equal to +oo is +oo (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrgepnfd.1 φA*
xrgepnfd.2 φ+∞A
Assertion xrgepnfd φA=+∞

Proof

Step Hyp Ref Expression
1 xrgepnfd.1 φA*
2 xrgepnfd.2 φ+∞A
3 pnfxr +∞*
4 3 a1i φ+∞*
5 pnfge A*A+∞
6 1 5 syl φA+∞
7 1 4 6 2 xrletrid φA=+∞