Metamath Proof Explorer


Theorem xrge0nemnfd

Description: A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis xrge0nemnfd.1 φA0+∞
Assertion xrge0nemnfd φA−∞

Proof

Step Hyp Ref Expression
1 xrge0nemnfd.1 φA0+∞
2 mnfxr −∞*
3 2 a1i φ−∞*
4 iccssxr 0+∞*
5 4 1 sselid φA*
6 0xr 0*
7 6 a1i φ0*
8 mnflt0 −∞<0
9 8 a1i φ−∞<0
10 pnfxr +∞*
11 10 a1i φ+∞*
12 iccgelb 0*+∞*A0+∞0A
13 7 11 1 12 syl3anc φ0A
14 3 7 5 9 13 xrltletrd φ−∞<A
15 3 5 14 xrgtned φA−∞