Description: A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrge0nemnfd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,] +∞ ) ) | |
| Assertion | xrge0nemnfd | ⊢ ( 𝜑 → 𝐴 ≠ -∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0nemnfd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,] +∞ ) ) | |
| 2 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 3 | 2 | a1i | ⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
| 4 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 5 | 4 1 | sselid | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 6 | 0xr | ⊢ 0 ∈ ℝ* | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → 0 ∈ ℝ* ) |
| 8 | mnflt0 | ⊢ -∞ < 0 | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → -∞ < 0 ) |
| 10 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 12 | iccgelb | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐴 ) | |
| 13 | 7 11 1 12 | syl3anc | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 14 | 3 7 5 9 13 | xrltletrd | ⊢ ( 𝜑 → -∞ < 𝐴 ) |
| 15 | 3 5 14 | xrgtned | ⊢ ( 𝜑 → 𝐴 ≠ -∞ ) |