| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supxrgere.xph |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
supxrgere.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 3 |
|
supxrgere.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 4 |
|
supxrgere.y |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 𝑥 ) < 𝑦 ) |
| 5 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
| 6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 7 |
6
|
a1i |
⊢ ( 𝐵 ∈ ℝ → +∞ ∈ ℝ* ) |
| 8 |
|
ltpnf |
⊢ ( 𝐵 ∈ ℝ → 𝐵 < +∞ ) |
| 9 |
5 7 8
|
xrltled |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ≤ +∞ ) |
| 10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝐵 ≤ +∞ ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → 𝐵 ≤ +∞ ) |
| 12 |
|
id |
⊢ ( sup ( 𝐴 , ℝ* , < ) = +∞ → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 13 |
12
|
eqcomd |
⊢ ( sup ( 𝐴 , ℝ* , < ) = +∞ → +∞ = sup ( 𝐴 , ℝ* , < ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → +∞ = sup ( 𝐴 , ℝ* , < ) ) |
| 15 |
11 14
|
breqtrd |
⊢ ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 16 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → 𝜑 ) |
| 17 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑥 1 |
| 19 |
|
nfv |
⊢ Ⅎ 𝑥 1 ∈ ℝ+ |
| 20 |
1 19
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 1 ∈ ℝ+ ) |
| 21 |
|
nfv |
⊢ Ⅎ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 |
| 22 |
20 21
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 1 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) |
| 23 |
|
eleq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+ ) ) |
| 24 |
23
|
anbi2d |
⊢ ( 𝑥 = 1 → ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ↔ ( 𝜑 ∧ 1 ∈ ℝ+ ) ) ) |
| 25 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝐵 − 𝑥 ) = ( 𝐵 − 1 ) ) |
| 26 |
25
|
breq1d |
⊢ ( 𝑥 = 1 → ( ( 𝐵 − 𝑥 ) < 𝑦 ↔ ( 𝐵 − 1 ) < 𝑦 ) ) |
| 27 |
26
|
rexbidv |
⊢ ( 𝑥 = 1 → ( ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 𝑥 ) < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) |
| 28 |
24 27
|
imbi12d |
⊢ ( 𝑥 = 1 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 𝑥 ) < 𝑦 ) ↔ ( ( 𝜑 ∧ 1 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) ) |
| 29 |
18 22 28 4
|
vtoclgf |
⊢ ( 1 ∈ ℝ+ → ( ( 𝜑 ∧ 1 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) |
| 30 |
17 29
|
ax-mp |
⊢ ( ( 𝜑 ∧ 1 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) |
| 31 |
17 30
|
mpan2 |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) |
| 33 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 34 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ ( 𝐵 − 1 ) < 𝑦 ) → -∞ ∈ ℝ* ) |
| 35 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 36 |
35
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ ( 𝐵 − 1 ) < 𝑦 ) → 𝑦 ∈ ℝ* ) |
| 37 |
|
supxrcl |
⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 38 |
2 37
|
syl |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 39 |
38
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ ( 𝐵 − 1 ) < 𝑦 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 40 |
|
peano2rem |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 − 1 ) ∈ ℝ ) |
| 41 |
3 40
|
syl |
⊢ ( 𝜑 → ( 𝐵 − 1 ) ∈ ℝ ) |
| 42 |
41
|
rexrd |
⊢ ( 𝜑 → ( 𝐵 − 1 ) ∈ ℝ* ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ -∞ < 𝑦 ) → ( 𝐵 − 1 ) ∈ ℝ* ) |
| 44 |
43
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ ( 𝐵 − 1 ) < 𝑦 ) ∧ ¬ -∞ < 𝑦 ) → ( 𝐵 − 1 ) ∈ ℝ* ) |
| 45 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ ( 𝐵 − 1 ) < 𝑦 ) ∧ ¬ -∞ < 𝑦 ) → 𝑦 ∈ ℝ* ) |
| 46 |
33
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ ( 𝐵 − 1 ) < 𝑦 ) ∧ ¬ -∞ < 𝑦 ) → -∞ ∈ ℝ* ) |
| 47 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ ( 𝐵 − 1 ) < 𝑦 ) ∧ ¬ -∞ < 𝑦 ) → ( 𝐵 − 1 ) < 𝑦 ) |
| 48 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ -∞ < 𝑦 ) → ¬ -∞ < 𝑦 ) |
| 49 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ -∞ < 𝑦 ) → 𝑦 ∈ ℝ* ) |
| 50 |
33
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ -∞ < 𝑦 ) → -∞ ∈ ℝ* ) |
| 51 |
|
xrlenlt |
⊢ ( ( 𝑦 ∈ ℝ* ∧ -∞ ∈ ℝ* ) → ( 𝑦 ≤ -∞ ↔ ¬ -∞ < 𝑦 ) ) |
| 52 |
49 50 51
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ -∞ < 𝑦 ) → ( 𝑦 ≤ -∞ ↔ ¬ -∞ < 𝑦 ) ) |
| 53 |
48 52
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ -∞ < 𝑦 ) → 𝑦 ≤ -∞ ) |
| 54 |
53
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ ( 𝐵 − 1 ) < 𝑦 ) ∧ ¬ -∞ < 𝑦 ) → 𝑦 ≤ -∞ ) |
| 55 |
44 45 46 47 54
|
xrltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ ( 𝐵 − 1 ) < 𝑦 ) ∧ ¬ -∞ < 𝑦 ) → ( 𝐵 − 1 ) < -∞ ) |
| 56 |
|
nltmnf |
⊢ ( ( 𝐵 − 1 ) ∈ ℝ* → ¬ ( 𝐵 − 1 ) < -∞ ) |
| 57 |
42 56
|
syl |
⊢ ( 𝜑 → ¬ ( 𝐵 − 1 ) < -∞ ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ -∞ < 𝑦 ) → ¬ ( 𝐵 − 1 ) < -∞ ) |
| 59 |
58
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ ( 𝐵 − 1 ) < 𝑦 ) ∧ ¬ -∞ < 𝑦 ) → ¬ ( 𝐵 − 1 ) < -∞ ) |
| 60 |
55 59
|
condan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ ( 𝐵 − 1 ) < 𝑦 ) → -∞ < 𝑦 ) |
| 61 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐴 ⊆ ℝ* ) |
| 62 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 63 |
|
supxrub |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 64 |
61 62 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 65 |
64
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ ( 𝐵 − 1 ) < 𝑦 ) → 𝑦 ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 66 |
34 36 39 60 65
|
xrltletrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ ( 𝐵 − 1 ) < 𝑦 ) → -∞ < sup ( 𝐴 , ℝ* , < ) ) |
| 67 |
66
|
3exp |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 → ( ( 𝐵 − 1 ) < 𝑦 → -∞ < sup ( 𝐴 , ℝ* , < ) ) ) ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ( 𝑦 ∈ 𝐴 → ( ( 𝐵 − 1 ) < 𝑦 → -∞ < sup ( 𝐴 , ℝ* , < ) ) ) ) |
| 69 |
68
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 → -∞ < sup ( 𝐴 , ℝ* , < ) ) ) |
| 70 |
32 69
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → -∞ < sup ( 𝐴 , ℝ* , < ) ) |
| 71 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 72 |
|
nltpnft |
⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 73 |
38 72
|
syl |
⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 75 |
71 74
|
mtbid |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ¬ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) |
| 76 |
75
|
notnotrd |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → sup ( 𝐴 , ℝ* , < ) < +∞ ) |
| 77 |
70 76
|
jca |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ( -∞ < sup ( 𝐴 , ℝ* , < ) ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 78 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 79 |
|
xrrebnd |
⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ ( -∞ < sup ( 𝐴 , ℝ* , < ) ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) ) |
| 80 |
78 79
|
syl |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ ( -∞ < sup ( 𝐴 , ℝ* , < ) ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) ) |
| 81 |
77 80
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
| 82 |
|
simpl |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ ¬ 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) → ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ) |
| 83 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ ¬ 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) → ¬ 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 84 |
82
|
simprd |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ ¬ 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
| 85 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ ¬ 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) → 𝐵 ∈ ℝ ) |
| 86 |
84 85
|
ltnled |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ ¬ 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) → ( sup ( 𝐴 , ℝ* , < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) ) |
| 87 |
83 86
|
mpbird |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ ¬ 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) → sup ( 𝐴 , ℝ* , < ) < 𝐵 ) |
| 88 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) → 𝜑 ) |
| 89 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) → 𝐵 ∈ ℝ ) |
| 90 |
|
simpr |
⊢ ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
| 91 |
89 90
|
resubcld |
⊢ ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) → ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ∈ ℝ ) |
| 92 |
91
|
adantr |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) → ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ∈ ℝ ) |
| 93 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) → sup ( 𝐴 , ℝ* , < ) < 𝐵 ) |
| 94 |
90
|
adantr |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
| 95 |
88 3
|
syl |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 96 |
94 95
|
posdifd |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) → ( sup ( 𝐴 , ℝ* , < ) < 𝐵 ↔ 0 < ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) ) |
| 97 |
93 96
|
mpbid |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) → 0 < ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) |
| 98 |
92 97
|
elrpd |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) → ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ∈ ℝ+ ) |
| 99 |
|
ovex |
⊢ ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ∈ V |
| 100 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) |
| 101 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ∈ ℝ+ |
| 102 |
1 101
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ∈ ℝ+ ) |
| 103 |
|
nfv |
⊢ Ⅎ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 |
| 104 |
102 103
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) |
| 105 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) → ( 𝑥 ∈ ℝ+ ↔ ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ∈ ℝ+ ) ) |
| 106 |
105
|
anbi2d |
⊢ ( 𝑥 = ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) → ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ↔ ( 𝜑 ∧ ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ∈ ℝ+ ) ) ) |
| 107 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) → ( 𝐵 − 𝑥 ) = ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) ) |
| 108 |
107
|
breq1d |
⊢ ( 𝑥 = ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) → ( ( 𝐵 − 𝑥 ) < 𝑦 ↔ ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) ) |
| 109 |
108
|
rexbidv |
⊢ ( 𝑥 = ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 𝑥 ) < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) ) |
| 110 |
106 109
|
imbi12d |
⊢ ( 𝑥 = ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 𝑥 ) < 𝑦 ) ↔ ( ( 𝜑 ∧ ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) ) ) |
| 111 |
100 104 110 4
|
vtoclgf |
⊢ ( ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ∈ V → ( ( 𝜑 ∧ ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) ) |
| 112 |
99 111
|
ax-mp |
⊢ ( ( 𝜑 ∧ ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) |
| 113 |
88 98 112
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) |
| 114 |
3
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 115 |
114
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) ∧ ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) → 𝐵 ∈ ℂ ) |
| 116 |
90
|
recnd |
⊢ ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) → sup ( 𝐴 , ℝ* , < ) ∈ ℂ ) |
| 117 |
116
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) ∧ ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℂ ) |
| 118 |
115 117
|
nncand |
⊢ ( ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) ∧ ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) → ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) = sup ( 𝐴 , ℝ* , < ) ) |
| 119 |
118
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) ∧ ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) ) |
| 120 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) ∧ ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) → ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) |
| 121 |
119 120
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) ∧ ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 ) → sup ( 𝐴 , ℝ* , < ) < 𝑦 ) |
| 122 |
121
|
ex |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) → ( ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 → sup ( 𝐴 , ℝ* , < ) < 𝑦 ) ) |
| 123 |
122
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 → sup ( 𝐴 , ℝ* , < ) < 𝑦 ) ) |
| 124 |
123
|
reximdva |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝐵 − ( 𝐵 − sup ( 𝐴 , ℝ* , < ) ) ) < 𝑦 → ∃ 𝑦 ∈ 𝐴 sup ( 𝐴 , ℝ* , < ) < 𝑦 ) ) |
| 125 |
113 124
|
mpd |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) → ∃ 𝑦 ∈ 𝐴 sup ( 𝐴 , ℝ* , < ) < 𝑦 ) |
| 126 |
82 87 125
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ ¬ 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) → ∃ 𝑦 ∈ 𝐴 sup ( 𝐴 , ℝ* , < ) < 𝑦 ) |
| 127 |
61 37
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 128 |
35 127
|
xrlenltd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ≤ sup ( 𝐴 , ℝ* , < ) ↔ ¬ sup ( 𝐴 , ℝ* , < ) < 𝑦 ) ) |
| 129 |
64 128
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ¬ sup ( 𝐴 , ℝ* , < ) < 𝑦 ) |
| 130 |
129
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ¬ sup ( 𝐴 , ℝ* , < ) < 𝑦 ) |
| 131 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ sup ( 𝐴 , ℝ* , < ) < 𝑦 ↔ ¬ ∃ 𝑦 ∈ 𝐴 sup ( 𝐴 , ℝ* , < ) < 𝑦 ) |
| 132 |
130 131
|
sylib |
⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ 𝐴 sup ( 𝐴 , ℝ* , < ) < 𝑦 ) |
| 133 |
132
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ∧ ¬ 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) → ¬ ∃ 𝑦 ∈ 𝐴 sup ( 𝐴 , ℝ* , < ) < 𝑦 ) |
| 134 |
126 133
|
condan |
⊢ ( ( 𝜑 ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) → 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 135 |
16 81 134
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ sup ( 𝐴 , ℝ* , < ) = +∞ ) → 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 136 |
15 135
|
pm2.61dan |
⊢ ( 𝜑 → 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) |