Description: A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrge0nemnfd.1 | |- ( ph -> A e. ( 0 [,] +oo ) ) |
|
| Assertion | xrge0nemnfd | |- ( ph -> A =/= -oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0nemnfd.1 | |- ( ph -> A e. ( 0 [,] +oo ) ) |
|
| 2 | mnfxr | |- -oo e. RR* |
|
| 3 | 2 | a1i | |- ( ph -> -oo e. RR* ) |
| 4 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 5 | 4 1 | sselid | |- ( ph -> A e. RR* ) |
| 6 | 0xr | |- 0 e. RR* |
|
| 7 | 6 | a1i | |- ( ph -> 0 e. RR* ) |
| 8 | mnflt0 | |- -oo < 0 |
|
| 9 | 8 | a1i | |- ( ph -> -oo < 0 ) |
| 10 | pnfxr | |- +oo e. RR* |
|
| 11 | 10 | a1i | |- ( ph -> +oo e. RR* ) |
| 12 | iccgelb | |- ( ( 0 e. RR* /\ +oo e. RR* /\ A e. ( 0 [,] +oo ) ) -> 0 <_ A ) |
|
| 13 | 7 11 1 12 | syl3anc | |- ( ph -> 0 <_ A ) |
| 14 | 3 7 5 9 13 | xrltletrd | |- ( ph -> -oo < A ) |
| 15 | 3 5 14 | xrgtned | |- ( ph -> A =/= -oo ) |