Metamath Proof Explorer


Theorem fge0iccre

Description: A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fge0iccre.1
|- ( ph -> F : X --> ( 0 [,] +oo ) )
fge0iccre.2
|- ( ph -> -. +oo e. ran F )
Assertion fge0iccre
|- ( ph -> F : X --> RR )

Proof

Step Hyp Ref Expression
1 fge0iccre.1
 |-  ( ph -> F : X --> ( 0 [,] +oo ) )
2 fge0iccre.2
 |-  ( ph -> -. +oo e. ran F )
3 1 2 fge0iccico
 |-  ( ph -> F : X --> ( 0 [,) +oo ) )
4 rge0ssre
 |-  ( 0 [,) +oo ) C_ RR
5 4 a1i
 |-  ( ph -> ( 0 [,) +oo ) C_ RR )
6 3 5 fssd
 |-  ( ph -> F : X --> RR )