Step |
Hyp |
Ref |
Expression |
1 |
|
sge0z.1 |
|- F/ k ph |
2 |
|
sge0z.2 |
|- ( ph -> A e. V ) |
3 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
4 |
3
|
a1i |
|- ( ( ph /\ k e. A ) -> 0 e. ( 0 [,) +oo ) ) |
5 |
1 4
|
fmptd2f |
|- ( ph -> ( k e. A |-> 0 ) : A --> ( 0 [,) +oo ) ) |
6 |
2 5
|
sge0reval |
|- ( ph -> ( sum^ ` ( k e. A |-> 0 ) ) = sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) ) , RR* , < ) ) |
7 |
|
eqidd |
|- ( ( x e. ( ~P A i^i Fin ) /\ y e. x ) -> ( k e. A |-> 0 ) = ( k e. A |-> 0 ) ) |
8 |
|
eqidd |
|- ( ( ( x e. ( ~P A i^i Fin ) /\ y e. x ) /\ k = y ) -> 0 = 0 ) |
9 |
|
elpwinss |
|- ( x e. ( ~P A i^i Fin ) -> x C_ A ) |
10 |
9
|
sselda |
|- ( ( x e. ( ~P A i^i Fin ) /\ y e. x ) -> y e. A ) |
11 |
|
0cnd |
|- ( ( x e. ( ~P A i^i Fin ) /\ y e. x ) -> 0 e. CC ) |
12 |
7 8 10 11
|
fvmptd |
|- ( ( x e. ( ~P A i^i Fin ) /\ y e. x ) -> ( ( k e. A |-> 0 ) ` y ) = 0 ) |
13 |
12
|
adantll |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ y e. x ) -> ( ( k e. A |-> 0 ) ` y ) = 0 ) |
14 |
13
|
sumeq2dv |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) = sum_ y e. x 0 ) |
15 |
|
elinel2 |
|- ( x e. ( ~P A i^i Fin ) -> x e. Fin ) |
16 |
|
olc |
|- ( x e. Fin -> ( x C_ ( ZZ>= ` B ) \/ x e. Fin ) ) |
17 |
|
sumz |
|- ( ( x C_ ( ZZ>= ` B ) \/ x e. Fin ) -> sum_ y e. x 0 = 0 ) |
18 |
15 16 17
|
3syl |
|- ( x e. ( ~P A i^i Fin ) -> sum_ y e. x 0 = 0 ) |
19 |
18
|
adantl |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ y e. x 0 = 0 ) |
20 |
14 19
|
eqtrd |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) = 0 ) |
21 |
20
|
mpteq2dva |
|- ( ph -> ( x e. ( ~P A i^i Fin ) |-> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) ) = ( x e. ( ~P A i^i Fin ) |-> 0 ) ) |
22 |
21
|
rneqd |
|- ( ph -> ran ( x e. ( ~P A i^i Fin ) |-> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) ) = ran ( x e. ( ~P A i^i Fin ) |-> 0 ) ) |
23 |
|
eqid |
|- ( x e. ( ~P A i^i Fin ) |-> 0 ) = ( x e. ( ~P A i^i Fin ) |-> 0 ) |
24 |
|
pwfin0 |
|- ( ~P A i^i Fin ) =/= (/) |
25 |
24
|
a1i |
|- ( ph -> ( ~P A i^i Fin ) =/= (/) ) |
26 |
23 25
|
rnmptc |
|- ( ph -> ran ( x e. ( ~P A i^i Fin ) |-> 0 ) = { 0 } ) |
27 |
22 26
|
eqtrd |
|- ( ph -> ran ( x e. ( ~P A i^i Fin ) |-> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) ) = { 0 } ) |
28 |
27
|
supeq1d |
|- ( ph -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) ) , RR* , < ) = sup ( { 0 } , RR* , < ) ) |
29 |
|
xrltso |
|- < Or RR* |
30 |
29
|
a1i |
|- ( ph -> < Or RR* ) |
31 |
|
0xr |
|- 0 e. RR* |
32 |
|
supsn |
|- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
33 |
30 31 32
|
sylancl |
|- ( ph -> sup ( { 0 } , RR* , < ) = 0 ) |
34 |
6 28 33
|
3eqtrd |
|- ( ph -> ( sum^ ` ( k e. A |-> 0 ) ) = 0 ) |