Metamath Proof Explorer


Theorem sge0z

Description: Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0z.1
|- F/ k ph
sge0z.2
|- ( ph -> A e. V )
Assertion sge0z
|- ( ph -> ( sum^ ` ( k e. A |-> 0 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 sge0z.1
 |-  F/ k ph
2 sge0z.2
 |-  ( ph -> A e. V )
3 0e0icopnf
 |-  0 e. ( 0 [,) +oo )
4 3 a1i
 |-  ( ( ph /\ k e. A ) -> 0 e. ( 0 [,) +oo ) )
5 1 4 fmptd2f
 |-  ( ph -> ( k e. A |-> 0 ) : A --> ( 0 [,) +oo ) )
6 2 5 sge0reval
 |-  ( ph -> ( sum^ ` ( k e. A |-> 0 ) ) = sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) ) , RR* , < ) )
7 eqidd
 |-  ( ( x e. ( ~P A i^i Fin ) /\ y e. x ) -> ( k e. A |-> 0 ) = ( k e. A |-> 0 ) )
8 eqidd
 |-  ( ( ( x e. ( ~P A i^i Fin ) /\ y e. x ) /\ k = y ) -> 0 = 0 )
9 elpwinss
 |-  ( x e. ( ~P A i^i Fin ) -> x C_ A )
10 9 sselda
 |-  ( ( x e. ( ~P A i^i Fin ) /\ y e. x ) -> y e. A )
11 0cnd
 |-  ( ( x e. ( ~P A i^i Fin ) /\ y e. x ) -> 0 e. CC )
12 7 8 10 11 fvmptd
 |-  ( ( x e. ( ~P A i^i Fin ) /\ y e. x ) -> ( ( k e. A |-> 0 ) ` y ) = 0 )
13 12 adantll
 |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ y e. x ) -> ( ( k e. A |-> 0 ) ` y ) = 0 )
14 13 sumeq2dv
 |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) = sum_ y e. x 0 )
15 elinel2
 |-  ( x e. ( ~P A i^i Fin ) -> x e. Fin )
16 olc
 |-  ( x e. Fin -> ( x C_ ( ZZ>= ` B ) \/ x e. Fin ) )
17 sumz
 |-  ( ( x C_ ( ZZ>= ` B ) \/ x e. Fin ) -> sum_ y e. x 0 = 0 )
18 15 16 17 3syl
 |-  ( x e. ( ~P A i^i Fin ) -> sum_ y e. x 0 = 0 )
19 18 adantl
 |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ y e. x 0 = 0 )
20 14 19 eqtrd
 |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) = 0 )
21 20 mpteq2dva
 |-  ( ph -> ( x e. ( ~P A i^i Fin ) |-> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) ) = ( x e. ( ~P A i^i Fin ) |-> 0 ) )
22 21 rneqd
 |-  ( ph -> ran ( x e. ( ~P A i^i Fin ) |-> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) ) = ran ( x e. ( ~P A i^i Fin ) |-> 0 ) )
23 eqid
 |-  ( x e. ( ~P A i^i Fin ) |-> 0 ) = ( x e. ( ~P A i^i Fin ) |-> 0 )
24 pwfin0
 |-  ( ~P A i^i Fin ) =/= (/)
25 24 a1i
 |-  ( ph -> ( ~P A i^i Fin ) =/= (/) )
26 23 25 rnmptc
 |-  ( ph -> ran ( x e. ( ~P A i^i Fin ) |-> 0 ) = { 0 } )
27 22 26 eqtrd
 |-  ( ph -> ran ( x e. ( ~P A i^i Fin ) |-> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) ) = { 0 } )
28 27 supeq1d
 |-  ( ph -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ y e. x ( ( k e. A |-> 0 ) ` y ) ) , RR* , < ) = sup ( { 0 } , RR* , < ) )
29 xrltso
 |-  < Or RR*
30 29 a1i
 |-  ( ph -> < Or RR* )
31 0xr
 |-  0 e. RR*
32 supsn
 |-  ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 )
33 30 31 32 sylancl
 |-  ( ph -> sup ( { 0 } , RR* , < ) = 0 )
34 6 28 33 3eqtrd
 |-  ( ph -> ( sum^ ` ( k e. A |-> 0 ) ) = 0 )