Metamath Proof Explorer


Theorem sge0z

Description: Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0z.1 𝑘 𝜑
sge0z.2 ( 𝜑𝐴𝑉 )
Assertion sge0z ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴 ↦ 0 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 sge0z.1 𝑘 𝜑
2 sge0z.2 ( 𝜑𝐴𝑉 )
3 0e0icopnf 0 ∈ ( 0 [,) +∞ )
4 3 a1i ( ( 𝜑𝑘𝐴 ) → 0 ∈ ( 0 [,) +∞ ) )
5 1 4 fmptd2f ( 𝜑 → ( 𝑘𝐴 ↦ 0 ) : 𝐴 ⟶ ( 0 [,) +∞ ) )
6 2 5 sge0reval ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴 ↦ 0 ) ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑦𝑥 ( ( 𝑘𝐴 ↦ 0 ) ‘ 𝑦 ) ) , ℝ* , < ) )
7 eqidd ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦𝑥 ) → ( 𝑘𝐴 ↦ 0 ) = ( 𝑘𝐴 ↦ 0 ) )
8 eqidd ( ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦𝑥 ) ∧ 𝑘 = 𝑦 ) → 0 = 0 )
9 elpwinss ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥𝐴 )
10 9 sselda ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦𝑥 ) → 𝑦𝐴 )
11 0cnd ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦𝑥 ) → 0 ∈ ℂ )
12 7 8 10 11 fvmptd ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦𝑥 ) → ( ( 𝑘𝐴 ↦ 0 ) ‘ 𝑦 ) = 0 )
13 12 adantll ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑦𝑥 ) → ( ( 𝑘𝐴 ↦ 0 ) ‘ 𝑦 ) = 0 )
14 13 sumeq2dv ( ( 𝜑𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑦𝑥 ( ( 𝑘𝐴 ↦ 0 ) ‘ 𝑦 ) = Σ 𝑦𝑥 0 )
15 elinel2 ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ Fin )
16 olc ( 𝑥 ∈ Fin → ( 𝑥 ⊆ ( ℤ𝐵 ) ∨ 𝑥 ∈ Fin ) )
17 sumz ( ( 𝑥 ⊆ ( ℤ𝐵 ) ∨ 𝑥 ∈ Fin ) → Σ 𝑦𝑥 0 = 0 )
18 15 16 17 3syl ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → Σ 𝑦𝑥 0 = 0 )
19 18 adantl ( ( 𝜑𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑦𝑥 0 = 0 )
20 14 19 eqtrd ( ( 𝜑𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑦𝑥 ( ( 𝑘𝐴 ↦ 0 ) ‘ 𝑦 ) = 0 )
21 20 mpteq2dva ( 𝜑 → ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑦𝑥 ( ( 𝑘𝐴 ↦ 0 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) )
22 21 rneqd ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑦𝑥 ( ( 𝑘𝐴 ↦ 0 ) ‘ 𝑦 ) ) = ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) )
23 eqid ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 )
24 pwfin0 ( 𝒫 𝐴 ∩ Fin ) ≠ ∅
25 24 a1i ( 𝜑 → ( 𝒫 𝐴 ∩ Fin ) ≠ ∅ )
26 23 25 rnmptc ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = { 0 } )
27 22 26 eqtrd ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑦𝑥 ( ( 𝑘𝐴 ↦ 0 ) ‘ 𝑦 ) ) = { 0 } )
28 27 supeq1d ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑦𝑥 ( ( 𝑘𝐴 ↦ 0 ) ‘ 𝑦 ) ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) )
29 xrltso < Or ℝ*
30 29 a1i ( 𝜑 → < Or ℝ* )
31 0xr 0 ∈ ℝ*
32 supsn ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 )
33 30 31 32 sylancl ( 𝜑 → sup ( { 0 } , ℝ* , < ) = 0 )
34 6 28 33 3eqtrd ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴 ↦ 0 ) ) = 0 )