Step |
Hyp |
Ref |
Expression |
1 |
|
sge0z.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
sge0z.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
4 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
5 |
1 4
|
fmptd2f |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 0 ) : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
6 |
2 5
|
sge0reval |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ‘ 𝑦 ) ) , ℝ* , < ) ) |
7 |
|
eqidd |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑘 ∈ 𝐴 ↦ 0 ) = ( 𝑘 ∈ 𝐴 ↦ 0 ) ) |
8 |
|
eqidd |
⊢ ( ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑘 = 𝑦 ) → 0 = 0 ) |
9 |
|
elpwinss |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ⊆ 𝐴 ) |
10 |
9
|
sselda |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝐴 ) |
11 |
|
0cnd |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 0 ∈ ℂ ) |
12 |
7 8 10 11
|
fvmptd |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ‘ 𝑦 ) = 0 ) |
13 |
12
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ‘ 𝑦 ) = 0 ) |
14 |
13
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ‘ 𝑦 ) = Σ 𝑦 ∈ 𝑥 0 ) |
15 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ Fin ) |
16 |
|
olc |
⊢ ( 𝑥 ∈ Fin → ( 𝑥 ⊆ ( ℤ≥ ‘ 𝐵 ) ∨ 𝑥 ∈ Fin ) ) |
17 |
|
sumz |
⊢ ( ( 𝑥 ⊆ ( ℤ≥ ‘ 𝐵 ) ∨ 𝑥 ∈ Fin ) → Σ 𝑦 ∈ 𝑥 0 = 0 ) |
18 |
15 16 17
|
3syl |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → Σ 𝑦 ∈ 𝑥 0 = 0 ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 0 = 0 ) |
20 |
14 19
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ‘ 𝑦 ) = 0 ) |
21 |
20
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) ) |
22 |
21
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ‘ 𝑦 ) ) = ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) ) |
23 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) |
24 |
|
pwfin0 |
⊢ ( 𝒫 𝐴 ∩ Fin ) ≠ ∅ |
25 |
24
|
a1i |
⊢ ( 𝜑 → ( 𝒫 𝐴 ∩ Fin ) ≠ ∅ ) |
26 |
23 25
|
rnmptc |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = { 0 } ) |
27 |
22 26
|
eqtrd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ‘ 𝑦 ) ) = { 0 } ) |
28 |
27
|
supeq1d |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ‘ 𝑦 ) ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) ) |
29 |
|
xrltso |
⊢ < Or ℝ* |
30 |
29
|
a1i |
⊢ ( 𝜑 → < Or ℝ* ) |
31 |
|
0xr |
⊢ 0 ∈ ℝ* |
32 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) |
33 |
30 31 32
|
sylancl |
⊢ ( 𝜑 → sup ( { 0 } , ℝ* , < ) = 0 ) |
34 |
6 28 33
|
3eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |