Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
1
|
a1i |
⊢ ( ⊤ → ∅ ∈ V ) |
3 |
|
f0 |
⊢ ∅ : ∅ ⟶ ( 0 [,] +∞ ) |
4 |
3
|
a1i |
⊢ ( ⊤ → ∅ : ∅ ⟶ ( 0 [,] +∞ ) ) |
5 |
|
noel |
⊢ ¬ +∞ ∈ ∅ |
6 |
5
|
a1i |
⊢ ( ⊤ → ¬ +∞ ∈ ∅ ) |
7 |
|
rn0 |
⊢ ran ∅ = ∅ |
8 |
7
|
eqcomi |
⊢ ∅ = ran ∅ |
9 |
8
|
a1i |
⊢ ( ⊤ → ∅ = ran ∅ ) |
10 |
6 9
|
neleqtrd |
⊢ ( ⊤ → ¬ +∞ ∈ ran ∅ ) |
11 |
4 10
|
fge0iccico |
⊢ ( ⊤ → ∅ : ∅ ⟶ ( 0 [,) +∞ ) ) |
12 |
2 11
|
sge0reval |
⊢ ( ⊤ → ( Σ^ ‘ ∅ ) = sup ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) , ℝ* , < ) ) |
13 |
12
|
mptru |
⊢ ( Σ^ ‘ ∅ ) = sup ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) , ℝ* , < ) |
14 |
|
vex |
⊢ 𝑧 ∈ V |
15 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
16 |
15
|
elrnmpt |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ) |
17 |
14 16
|
ax-mp |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
18 |
17
|
biimpi |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
20 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
21 |
20
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
22 |
19 21
|
nfel |
⊢ Ⅎ 𝑥 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
23 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 = 0 |
24 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
25 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → 𝑥 ∈ 𝒫 ∅ ) |
26 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
27 |
26
|
eleq2i |
⊢ ( 𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ { ∅ } ) |
28 |
27
|
biimpi |
⊢ ( 𝑥 ∈ 𝒫 ∅ → 𝑥 ∈ { ∅ } ) |
29 |
25 28
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → 𝑥 ∈ { ∅ } ) |
30 |
|
elsni |
⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) |
31 |
29 30
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → 𝑥 = ∅ ) |
32 |
31
|
sumeq1d |
⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) ) |
34 |
|
sum0 |
⊢ Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) = 0 |
35 |
34
|
a1i |
⊢ ( ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) = 0 ) |
36 |
24 33 35
|
3eqtrd |
⊢ ( ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → 𝑧 = 0 ) |
37 |
36
|
ex |
⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → ( 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) → 𝑧 = 0 ) ) |
38 |
37
|
a1i |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → ( 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) → 𝑧 = 0 ) ) ) |
39 |
22 23 38
|
rexlimd |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → ( ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) → 𝑧 = 0 ) ) |
40 |
18 39
|
mpd |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → 𝑧 = 0 ) |
41 |
|
velsn |
⊢ ( 𝑧 ∈ { 0 } ↔ 𝑧 = 0 ) |
42 |
41
|
bicomi |
⊢ ( 𝑧 = 0 ↔ 𝑧 ∈ { 0 } ) |
43 |
42
|
biimpi |
⊢ ( 𝑧 = 0 → 𝑧 ∈ { 0 } ) |
44 |
40 43
|
syl |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → 𝑧 ∈ { 0 } ) |
45 |
|
elsni |
⊢ ( 𝑧 ∈ { 0 } → 𝑧 = 0 ) |
46 |
|
0elpw |
⊢ ∅ ∈ 𝒫 ∅ |
47 |
|
0fin |
⊢ ∅ ∈ Fin |
48 |
46 47
|
pm3.2i |
⊢ ( ∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin ) |
49 |
|
elin |
⊢ ( ∅ ∈ ( 𝒫 ∅ ∩ Fin ) ↔ ( ∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin ) ) |
50 |
48 49
|
mpbir |
⊢ ∅ ∈ ( 𝒫 ∅ ∩ Fin ) |
51 |
34
|
eqcomi |
⊢ 0 = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) |
52 |
|
sumeq1 |
⊢ ( 𝑥 = ∅ → Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) ) |
53 |
52
|
rspceeqv |
⊢ ( ( ∅ ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 0 = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 0 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
54 |
50 51 53
|
mp2an |
⊢ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 0 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) |
55 |
|
0re |
⊢ 0 ∈ ℝ |
56 |
15
|
elrnmpt |
⊢ ( 0 ∈ ℝ → ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 0 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ) |
57 |
55 56
|
ax-mp |
⊢ ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 0 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
58 |
54 57
|
mpbir |
⊢ 0 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
59 |
58
|
a1i |
⊢ ( 𝑧 ∈ { 0 } → 0 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ) |
60 |
45 59
|
eqeltrd |
⊢ ( 𝑧 ∈ { 0 } → 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ) |
61 |
44 60
|
impbii |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ 𝑧 ∈ { 0 } ) |
62 |
61
|
ax-gen |
⊢ ∀ 𝑧 ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ 𝑧 ∈ { 0 } ) |
63 |
|
dfcleq |
⊢ ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) = { 0 } ↔ ∀ 𝑧 ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ 𝑧 ∈ { 0 } ) ) |
64 |
62 63
|
mpbir |
⊢ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) = { 0 } |
65 |
64
|
supeq1i |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) |
66 |
|
xrltso |
⊢ < Or ℝ* |
67 |
|
0xr |
⊢ 0 ∈ ℝ* |
68 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) |
69 |
66 67 68
|
mp2an |
⊢ sup ( { 0 } , ℝ* , < ) = 0 |
70 |
65 69
|
eqtri |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) , ℝ* , < ) = 0 |
71 |
13 70
|
eqtri |
⊢ ( Σ^ ‘ ∅ ) = 0 |