| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
⊢ ∅ ∈ V |
| 2 |
1
|
a1i |
⊢ ( ⊤ → ∅ ∈ V ) |
| 3 |
|
f0 |
⊢ ∅ : ∅ ⟶ ( 0 [,] +∞ ) |
| 4 |
3
|
a1i |
⊢ ( ⊤ → ∅ : ∅ ⟶ ( 0 [,] +∞ ) ) |
| 5 |
|
noel |
⊢ ¬ +∞ ∈ ∅ |
| 6 |
5
|
a1i |
⊢ ( ⊤ → ¬ +∞ ∈ ∅ ) |
| 7 |
|
rn0 |
⊢ ran ∅ = ∅ |
| 8 |
7
|
eqcomi |
⊢ ∅ = ran ∅ |
| 9 |
8
|
a1i |
⊢ ( ⊤ → ∅ = ran ∅ ) |
| 10 |
6 9
|
neleqtrd |
⊢ ( ⊤ → ¬ +∞ ∈ ran ∅ ) |
| 11 |
4 10
|
fge0iccico |
⊢ ( ⊤ → ∅ : ∅ ⟶ ( 0 [,) +∞ ) ) |
| 12 |
2 11
|
sge0reval |
⊢ ( ⊤ → ( Σ^ ‘ ∅ ) = sup ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) , ℝ* , < ) ) |
| 13 |
12
|
mptru |
⊢ ( Σ^ ‘ ∅ ) = sup ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) , ℝ* , < ) |
| 14 |
|
vex |
⊢ 𝑧 ∈ V |
| 15 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
| 16 |
15
|
elrnmpt |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ) |
| 17 |
14 16
|
ax-mp |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
| 18 |
17
|
biimpi |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
| 19 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 20 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
| 21 |
20
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
| 22 |
19 21
|
nfel |
⊢ Ⅎ 𝑥 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
| 23 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 = 0 |
| 24 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
| 25 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → 𝑥 ∈ 𝒫 ∅ ) |
| 26 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
| 27 |
26
|
eleq2i |
⊢ ( 𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ { ∅ } ) |
| 28 |
27
|
biimpi |
⊢ ( 𝑥 ∈ 𝒫 ∅ → 𝑥 ∈ { ∅ } ) |
| 29 |
25 28
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → 𝑥 ∈ { ∅ } ) |
| 30 |
|
elsni |
⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) |
| 31 |
29 30
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → 𝑥 = ∅ ) |
| 32 |
31
|
sumeq1d |
⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) ) |
| 34 |
|
sum0 |
⊢ Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) = 0 |
| 35 |
34
|
a1i |
⊢ ( ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) = 0 ) |
| 36 |
24 33 35
|
3eqtrd |
⊢ ( ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → 𝑧 = 0 ) |
| 37 |
36
|
ex |
⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → ( 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) → 𝑧 = 0 ) ) |
| 38 |
37
|
a1i |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → ( 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) → 𝑧 = 0 ) ) ) |
| 39 |
22 23 38
|
rexlimd |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → ( ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑧 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) → 𝑧 = 0 ) ) |
| 40 |
18 39
|
mpd |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → 𝑧 = 0 ) |
| 41 |
|
velsn |
⊢ ( 𝑧 ∈ { 0 } ↔ 𝑧 = 0 ) |
| 42 |
41
|
bicomi |
⊢ ( 𝑧 = 0 ↔ 𝑧 ∈ { 0 } ) |
| 43 |
42
|
biimpi |
⊢ ( 𝑧 = 0 → 𝑧 ∈ { 0 } ) |
| 44 |
40 43
|
syl |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) → 𝑧 ∈ { 0 } ) |
| 45 |
|
elsni |
⊢ ( 𝑧 ∈ { 0 } → 𝑧 = 0 ) |
| 46 |
|
0elpw |
⊢ ∅ ∈ 𝒫 ∅ |
| 47 |
|
0fi |
⊢ ∅ ∈ Fin |
| 48 |
46 47
|
pm3.2i |
⊢ ( ∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin ) |
| 49 |
|
elin |
⊢ ( ∅ ∈ ( 𝒫 ∅ ∩ Fin ) ↔ ( ∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin ) ) |
| 50 |
48 49
|
mpbir |
⊢ ∅ ∈ ( 𝒫 ∅ ∩ Fin ) |
| 51 |
34
|
eqcomi |
⊢ 0 = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) |
| 52 |
|
sumeq1 |
⊢ ( 𝑥 = ∅ → Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) ) |
| 53 |
52
|
rspceeqv |
⊢ ( ( ∅ ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 0 = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 0 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
| 54 |
50 51 53
|
mp2an |
⊢ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 0 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) |
| 55 |
|
0re |
⊢ 0 ∈ ℝ |
| 56 |
15
|
elrnmpt |
⊢ ( 0 ∈ ℝ → ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 0 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ) |
| 57 |
55 56
|
ax-mp |
⊢ ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 0 = Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
| 58 |
54 57
|
mpbir |
⊢ 0 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) |
| 59 |
58
|
a1i |
⊢ ( 𝑧 ∈ { 0 } → 0 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ) |
| 60 |
45 59
|
eqeltrd |
⊢ ( 𝑧 ∈ { 0 } → 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ) |
| 61 |
44 60
|
impbii |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ 𝑧 ∈ { 0 } ) |
| 62 |
61
|
ax-gen |
⊢ ∀ 𝑧 ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ 𝑧 ∈ { 0 } ) |
| 63 |
|
dfcleq |
⊢ ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) = { 0 } ↔ ∀ 𝑧 ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) ↔ 𝑧 ∈ { 0 } ) ) |
| 64 |
62 63
|
mpbir |
⊢ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) = { 0 } |
| 65 |
64
|
supeq1i |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) |
| 66 |
|
xrltso |
⊢ < Or ℝ* |
| 67 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 68 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) |
| 69 |
66 67 68
|
mp2an |
⊢ sup ( { 0 } , ℝ* , < ) = 0 |
| 70 |
65 69
|
eqtri |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ∅ ‘ 𝑦 ) ) , ℝ* , < ) = 0 |
| 71 |
13 70
|
eqtri |
⊢ ( Σ^ ‘ ∅ ) = 0 |