Metamath Proof Explorer


Theorem sge00

Description: The sum of nonnegative extended reals is zero when applied to the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion sge00 ( Σ^ ‘ ∅ ) = 0

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 1 a1i ( ⊤ → ∅ ∈ V )
3 f0 ∅ : ∅ ⟶ ( 0 [,] +∞ )
4 3 a1i ( ⊤ → ∅ : ∅ ⟶ ( 0 [,] +∞ ) )
5 noel ¬ +∞ ∈ ∅
6 5 a1i ( ⊤ → ¬ +∞ ∈ ∅ )
7 rn0 ran ∅ = ∅
8 7 eqcomi ∅ = ran ∅
9 8 a1i ( ⊤ → ∅ = ran ∅ )
10 6 9 neleqtrd ( ⊤ → ¬ +∞ ∈ ran ∅ )
11 4 10 fge0iccico ( ⊤ → ∅ : ∅ ⟶ ( 0 [,) +∞ ) )
12 2 11 sge0reval ( ⊤ → ( Σ^ ‘ ∅ ) = sup ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) , ℝ* , < ) )
13 12 mptru ( Σ^ ‘ ∅ ) = sup ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) , ℝ* , < )
14 vex 𝑧 ∈ V
15 eqid ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) )
16 15 elrnmpt ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑧 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) )
17 14 16 ax-mp ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑧 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) )
18 17 biimpi ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑧 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) )
19 nfcv 𝑥 𝑧
20 nfmpt1 𝑥 ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) )
21 20 nfrn 𝑥 ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) )
22 19 21 nfel 𝑥 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) )
23 nfv 𝑥 𝑧 = 0
24 simpr ( ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 𝑧 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) → 𝑧 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) )
25 elinel1 ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → 𝑥 ∈ 𝒫 ∅ )
26 pw0 𝒫 ∅ = { ∅ }
27 26 eleq2i ( 𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ { ∅ } )
28 27 biimpi ( 𝑥 ∈ 𝒫 ∅ → 𝑥 ∈ { ∅ } )
29 25 28 syl ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → 𝑥 ∈ { ∅ } )
30 elsni ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ )
31 29 30 syl ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → 𝑥 = ∅ )
32 31 sumeq1d ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) )
33 32 adantr ( ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 𝑧 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) → Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) )
34 sum0 Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) = 0
35 34 a1i ( ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 𝑧 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) → Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) = 0 )
36 24 33 35 3eqtrd ( ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 𝑧 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) → 𝑧 = 0 )
37 36 ex ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → ( 𝑧 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) → 𝑧 = 0 ) )
38 37 a1i ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) → ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → ( 𝑧 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) → 𝑧 = 0 ) ) )
39 22 23 38 rexlimd ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) → ( ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑧 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) → 𝑧 = 0 ) )
40 18 39 mpd ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) → 𝑧 = 0 )
41 velsn ( 𝑧 ∈ { 0 } ↔ 𝑧 = 0 )
42 41 bicomi ( 𝑧 = 0 ↔ 𝑧 ∈ { 0 } )
43 42 biimpi ( 𝑧 = 0 → 𝑧 ∈ { 0 } )
44 40 43 syl ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) → 𝑧 ∈ { 0 } )
45 elsni ( 𝑧 ∈ { 0 } → 𝑧 = 0 )
46 0elpw ∅ ∈ 𝒫 ∅
47 0fin ∅ ∈ Fin
48 46 47 pm3.2i ( ∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin )
49 elin ( ∅ ∈ ( 𝒫 ∅ ∩ Fin ) ↔ ( ∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin ) )
50 48 49 mpbir ∅ ∈ ( 𝒫 ∅ ∩ Fin )
51 34 eqcomi 0 = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 )
52 sumeq1 ( 𝑥 = ∅ → Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) )
53 52 rspceeqv ( ( ∅ ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 0 = Σ 𝑦 ∈ ∅ ( ∅ ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 0 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) )
54 50 51 53 mp2an 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 0 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 )
55 0re 0 ∈ ℝ
56 15 elrnmpt ( 0 ∈ ℝ → ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 0 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) )
57 55 56 ax-mp ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 0 = Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) )
58 54 57 mpbir 0 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) )
59 58 a1i ( 𝑧 ∈ { 0 } → 0 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) )
60 45 59 eqeltrd ( 𝑧 ∈ { 0 } → 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) )
61 44 60 impbii ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) ↔ 𝑧 ∈ { 0 } )
62 61 ax-gen 𝑧 ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) ↔ 𝑧 ∈ { 0 } )
63 dfcleq ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) = { 0 } ↔ ∀ 𝑧 ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) ↔ 𝑧 ∈ { 0 } ) )
64 62 63 mpbir ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) = { 0 }
65 64 supeq1i sup ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < )
66 xrltso < Or ℝ*
67 0xr 0 ∈ ℝ*
68 supsn ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 )
69 66 67 68 mp2an sup ( { 0 } , ℝ* , < ) = 0
70 65 69 eqtri sup ( ran ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ Σ 𝑦𝑥 ( ∅ ‘ 𝑦 ) ) , ℝ* , < ) = 0
71 13 70 eqtri ( Σ^ ‘ ∅ ) = 0