Step |
Hyp |
Ref |
Expression |
1 |
|
fsumlesge0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
fsumlesge0.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
3 |
|
fsumlesge0.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
4 |
|
fsumlesge0.fi |
⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
5 |
2
|
sge0rnre |
⊢ ( 𝜑 → ran ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) ⊆ ℝ ) |
6 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
7 |
6
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
8 |
5 7
|
sstrd |
⊢ ( 𝜑 → ran ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) ⊆ ℝ* ) |
9 |
1 3
|
ssexd |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
10 |
|
elpwg |
⊢ ( 𝑌 ∈ V → ( 𝑌 ∈ 𝒫 𝑋 ↔ 𝑌 ⊆ 𝑋 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝒫 𝑋 ↔ 𝑌 ⊆ 𝑋 ) ) |
12 |
3 11
|
mpbird |
⊢ ( 𝜑 → 𝑌 ∈ 𝒫 𝑋 ) |
13 |
12 4
|
elind |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
15 |
14
|
cbvsumv |
⊢ Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) = Σ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) = Σ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) ) |
17 |
|
sumeq1 |
⊢ ( 𝑦 = 𝑌 → Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) = Σ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) ) |
18 |
17
|
rspceeqv |
⊢ ( ( 𝑌 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) = Σ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) = Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) |
19 |
13 16 18
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) = Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) |
20 |
|
sumex |
⊢ Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) ∈ V |
21 |
20
|
a1i |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) ∈ V ) |
22 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) = ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) |
23 |
22
|
elrnmpt |
⊢ ( Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) ∈ V → ( Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) ∈ ran ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) = Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) ) |
24 |
21 23
|
syl |
⊢ ( 𝜑 → ( Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) ∈ ran ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) = Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) ) |
25 |
19 24
|
mpbird |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) ∈ ran ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) ) |
26 |
|
supxrub |
⊢ ( ( ran ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) ⊆ ℝ* ∧ Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) ∈ ran ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) ) → Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) ≤ sup ( ran ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) , ℝ* , < ) ) |
27 |
8 25 26
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) ≤ sup ( ran ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) , ℝ* , < ) ) |
28 |
1 2
|
sge0reval |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) , ℝ* , < ) ) |
29 |
28
|
eqcomd |
⊢ ( 𝜑 → sup ( ran ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( 𝐹 ‘ 𝑧 ) ) , ℝ* , < ) = ( Σ^ ‘ 𝐹 ) ) |
30 |
27 29
|
breqtrd |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝑌 ( 𝐹 ‘ 𝑥 ) ≤ ( Σ^ ‘ 𝐹 ) ) |