Metamath Proof Explorer


Theorem sge0revalmpt

Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0revalmpt.1 𝑥 𝜑
sge0revalmpt.2 ( 𝜑𝐴𝑉 )
sge0revalmpt.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
Assertion sge0revalmpt ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) = sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑥𝑦 𝐵 ) , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 sge0revalmpt.1 𝑥 𝜑
2 sge0revalmpt.2 ( 𝜑𝐴𝑉 )
3 sge0revalmpt.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
4 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
5 1 3 4 fmptdf ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,) +∞ ) )
6 2 5 sge0reval ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) = sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑧𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) ) , ℝ* , < ) )
7 fveq2 ( 𝑧 = 𝑥 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
8 nfcv 𝑥 𝑦
9 nfcv 𝑧 𝑦
10 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
11 nfcv 𝑥 𝑧
12 10 11 nffv 𝑥 ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 )
13 nfcv 𝑧 ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 )
14 7 8 9 12 13 cbvsum Σ 𝑧𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) = Σ 𝑥𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 )
15 14 a1i ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑧𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) = Σ 𝑥𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
16 nfv 𝑥 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin )
17 1 16 nfan 𝑥 ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) )
18 elpwinss ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦𝐴 )
19 18 adantr ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑥𝑦 ) → 𝑦𝐴 )
20 simpr ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑥𝑦 ) → 𝑥𝑦 )
21 19 20 sseldd ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑥𝑦 ) → 𝑥𝐴 )
22 21 adantll ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑥𝑦 ) → 𝑥𝐴 )
23 simpll ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑥𝑦 ) → 𝜑 )
24 23 22 3 syl2anc ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑥𝑦 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
25 4 fvmpt2 ( ( 𝑥𝐴𝐵 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
26 22 24 25 syl2anc ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑥𝑦 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
27 26 ex ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑥𝑦 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 ) )
28 17 27 ralrimi ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ∀ 𝑥𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
29 sumeq2 ( ∀ 𝑥𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 → Σ 𝑥𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = Σ 𝑥𝑦 𝐵 )
30 28 29 syl ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑥𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = Σ 𝑥𝑦 𝐵 )
31 15 30 eqtrd ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑧𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) = Σ 𝑥𝑦 𝐵 )
32 31 mpteq2dva ( 𝜑 → ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑧𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) ) = ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑥𝑦 𝐵 ) )
33 32 rneqd ( 𝜑 → ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑧𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) ) = ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑥𝑦 𝐵 ) )
34 33 supeq1d ( 𝜑 → sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑧𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) ) , ℝ* , < ) = sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑥𝑦 𝐵 ) , ℝ* , < ) )
35 6 34 eqtrd ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) = sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑥𝑦 𝐵 ) , ℝ* , < ) )