Step |
Hyp |
Ref |
Expression |
1 |
|
sge0revalmpt.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
sge0revalmpt.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
sge0revalmpt.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
5 |
1 3 4
|
fmptdf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
6 |
2 5
|
sge0reval |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) , ℝ* , < ) ) |
7 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
9 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑦 |
10 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
12 |
10 11
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) |
14 |
7 8 9 12 13
|
cbvsum |
⊢ Σ 𝑧 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) = Σ 𝑥 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) |
15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑧 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) = Σ 𝑥 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
16 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) |
17 |
1 16
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
18 |
|
elpwinss |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ⊆ 𝐴 ) |
19 |
18
|
adantr |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑥 ∈ 𝑦 ) → 𝑦 ⊆ 𝐴 ) |
20 |
|
simpr |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ 𝑦 ) |
21 |
19 20
|
sseldd |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ 𝐴 ) |
22 |
21
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ 𝐴 ) |
23 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝜑 ) |
24 |
23 22 3
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
25 |
4
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
26 |
22 24 25
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
27 |
26
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑥 ∈ 𝑦 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) ) |
28 |
17 27
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ∀ 𝑥 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
29 |
|
sumeq2 |
⊢ ( ∀ 𝑥 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 → Σ 𝑥 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = Σ 𝑥 ∈ 𝑦 𝐵 ) |
30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑥 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = Σ 𝑥 ∈ 𝑦 𝐵 ) |
31 |
15 30
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑧 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) = Σ 𝑥 ∈ 𝑦 𝐵 ) |
32 |
31
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) = ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑥 ∈ 𝑦 𝐵 ) ) |
33 |
32
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) = ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑥 ∈ 𝑦 𝐵 ) ) |
34 |
33
|
supeq1d |
⊢ ( 𝜑 → sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑧 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) , ℝ* , < ) = sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑥 ∈ 𝑦 𝐵 ) , ℝ* , < ) ) |
35 |
6 34
|
eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑥 ∈ 𝑦 𝐵 ) , ℝ* , < ) ) |