Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
1
|
a1i |
|- ( T. -> (/) e. _V ) |
3 |
|
f0 |
|- (/) : (/) --> ( 0 [,] +oo ) |
4 |
3
|
a1i |
|- ( T. -> (/) : (/) --> ( 0 [,] +oo ) ) |
5 |
|
noel |
|- -. +oo e. (/) |
6 |
5
|
a1i |
|- ( T. -> -. +oo e. (/) ) |
7 |
|
rn0 |
|- ran (/) = (/) |
8 |
7
|
eqcomi |
|- (/) = ran (/) |
9 |
8
|
a1i |
|- ( T. -> (/) = ran (/) ) |
10 |
6 9
|
neleqtrd |
|- ( T. -> -. +oo e. ran (/) ) |
11 |
4 10
|
fge0iccico |
|- ( T. -> (/) : (/) --> ( 0 [,) +oo ) ) |
12 |
2 11
|
sge0reval |
|- ( T. -> ( sum^ ` (/) ) = sup ( ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) , RR* , < ) ) |
13 |
12
|
mptru |
|- ( sum^ ` (/) ) = sup ( ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) , RR* , < ) |
14 |
|
vex |
|- z e. _V |
15 |
|
eqid |
|- ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) = ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) |
16 |
15
|
elrnmpt |
|- ( z e. _V -> ( z e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) <-> E. x e. ( ~P (/) i^i Fin ) z = sum_ y e. x ( (/) ` y ) ) ) |
17 |
14 16
|
ax-mp |
|- ( z e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) <-> E. x e. ( ~P (/) i^i Fin ) z = sum_ y e. x ( (/) ` y ) ) |
18 |
17
|
biimpi |
|- ( z e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) -> E. x e. ( ~P (/) i^i Fin ) z = sum_ y e. x ( (/) ` y ) ) |
19 |
|
nfcv |
|- F/_ x z |
20 |
|
nfmpt1 |
|- F/_ x ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) |
21 |
20
|
nfrn |
|- F/_ x ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) |
22 |
19 21
|
nfel |
|- F/ x z e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) |
23 |
|
nfv |
|- F/ x z = 0 |
24 |
|
simpr |
|- ( ( x e. ( ~P (/) i^i Fin ) /\ z = sum_ y e. x ( (/) ` y ) ) -> z = sum_ y e. x ( (/) ` y ) ) |
25 |
|
elinel1 |
|- ( x e. ( ~P (/) i^i Fin ) -> x e. ~P (/) ) |
26 |
|
pw0 |
|- ~P (/) = { (/) } |
27 |
26
|
eleq2i |
|- ( x e. ~P (/) <-> x e. { (/) } ) |
28 |
27
|
biimpi |
|- ( x e. ~P (/) -> x e. { (/) } ) |
29 |
25 28
|
syl |
|- ( x e. ( ~P (/) i^i Fin ) -> x e. { (/) } ) |
30 |
|
elsni |
|- ( x e. { (/) } -> x = (/) ) |
31 |
29 30
|
syl |
|- ( x e. ( ~P (/) i^i Fin ) -> x = (/) ) |
32 |
31
|
sumeq1d |
|- ( x e. ( ~P (/) i^i Fin ) -> sum_ y e. x ( (/) ` y ) = sum_ y e. (/) ( (/) ` y ) ) |
33 |
32
|
adantr |
|- ( ( x e. ( ~P (/) i^i Fin ) /\ z = sum_ y e. x ( (/) ` y ) ) -> sum_ y e. x ( (/) ` y ) = sum_ y e. (/) ( (/) ` y ) ) |
34 |
|
sum0 |
|- sum_ y e. (/) ( (/) ` y ) = 0 |
35 |
34
|
a1i |
|- ( ( x e. ( ~P (/) i^i Fin ) /\ z = sum_ y e. x ( (/) ` y ) ) -> sum_ y e. (/) ( (/) ` y ) = 0 ) |
36 |
24 33 35
|
3eqtrd |
|- ( ( x e. ( ~P (/) i^i Fin ) /\ z = sum_ y e. x ( (/) ` y ) ) -> z = 0 ) |
37 |
36
|
ex |
|- ( x e. ( ~P (/) i^i Fin ) -> ( z = sum_ y e. x ( (/) ` y ) -> z = 0 ) ) |
38 |
37
|
a1i |
|- ( z e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) -> ( x e. ( ~P (/) i^i Fin ) -> ( z = sum_ y e. x ( (/) ` y ) -> z = 0 ) ) ) |
39 |
22 23 38
|
rexlimd |
|- ( z e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) -> ( E. x e. ( ~P (/) i^i Fin ) z = sum_ y e. x ( (/) ` y ) -> z = 0 ) ) |
40 |
18 39
|
mpd |
|- ( z e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) -> z = 0 ) |
41 |
|
velsn |
|- ( z e. { 0 } <-> z = 0 ) |
42 |
41
|
bicomi |
|- ( z = 0 <-> z e. { 0 } ) |
43 |
42
|
biimpi |
|- ( z = 0 -> z e. { 0 } ) |
44 |
40 43
|
syl |
|- ( z e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) -> z e. { 0 } ) |
45 |
|
elsni |
|- ( z e. { 0 } -> z = 0 ) |
46 |
|
0elpw |
|- (/) e. ~P (/) |
47 |
|
0fin |
|- (/) e. Fin |
48 |
46 47
|
pm3.2i |
|- ( (/) e. ~P (/) /\ (/) e. Fin ) |
49 |
|
elin |
|- ( (/) e. ( ~P (/) i^i Fin ) <-> ( (/) e. ~P (/) /\ (/) e. Fin ) ) |
50 |
48 49
|
mpbir |
|- (/) e. ( ~P (/) i^i Fin ) |
51 |
34
|
eqcomi |
|- 0 = sum_ y e. (/) ( (/) ` y ) |
52 |
|
sumeq1 |
|- ( x = (/) -> sum_ y e. x ( (/) ` y ) = sum_ y e. (/) ( (/) ` y ) ) |
53 |
52
|
rspceeqv |
|- ( ( (/) e. ( ~P (/) i^i Fin ) /\ 0 = sum_ y e. (/) ( (/) ` y ) ) -> E. x e. ( ~P (/) i^i Fin ) 0 = sum_ y e. x ( (/) ` y ) ) |
54 |
50 51 53
|
mp2an |
|- E. x e. ( ~P (/) i^i Fin ) 0 = sum_ y e. x ( (/) ` y ) |
55 |
|
0re |
|- 0 e. RR |
56 |
15
|
elrnmpt |
|- ( 0 e. RR -> ( 0 e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) <-> E. x e. ( ~P (/) i^i Fin ) 0 = sum_ y e. x ( (/) ` y ) ) ) |
57 |
55 56
|
ax-mp |
|- ( 0 e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) <-> E. x e. ( ~P (/) i^i Fin ) 0 = sum_ y e. x ( (/) ` y ) ) |
58 |
54 57
|
mpbir |
|- 0 e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) |
59 |
58
|
a1i |
|- ( z e. { 0 } -> 0 e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) ) |
60 |
45 59
|
eqeltrd |
|- ( z e. { 0 } -> z e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) ) |
61 |
44 60
|
impbii |
|- ( z e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) <-> z e. { 0 } ) |
62 |
61
|
ax-gen |
|- A. z ( z e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) <-> z e. { 0 } ) |
63 |
|
dfcleq |
|- ( ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) = { 0 } <-> A. z ( z e. ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) <-> z e. { 0 } ) ) |
64 |
62 63
|
mpbir |
|- ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) = { 0 } |
65 |
64
|
supeq1i |
|- sup ( ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) , RR* , < ) = sup ( { 0 } , RR* , < ) |
66 |
|
xrltso |
|- < Or RR* |
67 |
|
0xr |
|- 0 e. RR* |
68 |
|
supsn |
|- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
69 |
66 67 68
|
mp2an |
|- sup ( { 0 } , RR* , < ) = 0 |
70 |
65 69
|
eqtri |
|- sup ( ran ( x e. ( ~P (/) i^i Fin ) |-> sum_ y e. x ( (/) ` y ) ) , RR* , < ) = 0 |
71 |
13 70
|
eqtri |
|- ( sum^ ` (/) ) = 0 |