Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|
2 |
1
|
a1i |
|
3 |
|
f0 |
|
4 |
3
|
a1i |
|
5 |
|
noel |
|
6 |
5
|
a1i |
|
7 |
|
rn0 |
|
8 |
7
|
eqcomi |
|
9 |
8
|
a1i |
|
10 |
6 9
|
neleqtrd |
|
11 |
4 10
|
fge0iccico |
|
12 |
2 11
|
sge0reval |
|
13 |
12
|
mptru |
|
14 |
|
vex |
|
15 |
|
eqid |
|
16 |
15
|
elrnmpt |
|
17 |
14 16
|
ax-mp |
|
18 |
17
|
biimpi |
|
19 |
|
nfcv |
|
20 |
|
nfmpt1 |
|
21 |
20
|
nfrn |
|
22 |
19 21
|
nfel |
|
23 |
|
nfv |
|
24 |
|
simpr |
|
25 |
|
elinel1 |
|
26 |
|
pw0 |
|
27 |
26
|
eleq2i |
|
28 |
27
|
biimpi |
|
29 |
25 28
|
syl |
|
30 |
|
elsni |
|
31 |
29 30
|
syl |
|
32 |
31
|
sumeq1d |
|
33 |
32
|
adantr |
|
34 |
|
sum0 |
|
35 |
34
|
a1i |
|
36 |
24 33 35
|
3eqtrd |
|
37 |
36
|
ex |
|
38 |
37
|
a1i |
|
39 |
22 23 38
|
rexlimd |
|
40 |
18 39
|
mpd |
|
41 |
|
velsn |
|
42 |
41
|
bicomi |
|
43 |
42
|
biimpi |
|
44 |
40 43
|
syl |
|
45 |
|
elsni |
|
46 |
|
0elpw |
|
47 |
|
0fin |
|
48 |
46 47
|
pm3.2i |
|
49 |
|
elin |
|
50 |
48 49
|
mpbir |
|
51 |
34
|
eqcomi |
|
52 |
|
sumeq1 |
|
53 |
52
|
rspceeqv |
|
54 |
50 51 53
|
mp2an |
|
55 |
|
0re |
|
56 |
15
|
elrnmpt |
|
57 |
55 56
|
ax-mp |
|
58 |
54 57
|
mpbir |
|
59 |
58
|
a1i |
|
60 |
45 59
|
eqeltrd |
|
61 |
44 60
|
impbii |
|
62 |
61
|
ax-gen |
|
63 |
|
dfcleq |
|
64 |
62 63
|
mpbir |
|
65 |
64
|
supeq1i |
|
66 |
|
xrltso |
|
67 |
|
0xr |
|
68 |
|
supsn |
|
69 |
66 67 68
|
mp2an |
|
70 |
65 69
|
eqtri |
|
71 |
13 70
|
eqtri |
|