Metamath Proof Explorer


Theorem sge0z

Description: Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0z.1 kφ
sge0z.2 φAV
Assertion sge0z φsum^kA0=0

Proof

Step Hyp Ref Expression
1 sge0z.1 kφ
2 sge0z.2 φAV
3 0e0icopnf 00+∞
4 3 a1i φkA00+∞
5 1 4 fmptd2f φkA0:A0+∞
6 2 5 sge0reval φsum^kA0=supranx𝒫AFinyxkA0y*<
7 eqidd x𝒫AFinyxkA0=kA0
8 eqidd x𝒫AFinyxk=y0=0
9 elpwinss x𝒫AFinxA
10 9 sselda x𝒫AFinyxyA
11 0cnd x𝒫AFinyx0
12 7 8 10 11 fvmptd x𝒫AFinyxkA0y=0
13 12 adantll φx𝒫AFinyxkA0y=0
14 13 sumeq2dv φx𝒫AFinyxkA0y=yx0
15 elinel2 x𝒫AFinxFin
16 olc xFinxBxFin
17 sumz xBxFinyx0=0
18 15 16 17 3syl x𝒫AFinyx0=0
19 18 adantl φx𝒫AFinyx0=0
20 14 19 eqtrd φx𝒫AFinyxkA0y=0
21 20 mpteq2dva φx𝒫AFinyxkA0y=x𝒫AFin0
22 21 rneqd φranx𝒫AFinyxkA0y=ranx𝒫AFin0
23 eqid x𝒫AFin0=x𝒫AFin0
24 pwfin0 𝒫AFin
25 24 a1i φ𝒫AFin
26 23 25 rnmptc φranx𝒫AFin0=0
27 22 26 eqtrd φranx𝒫AFinyxkA0y=0
28 27 supeq1d φsupranx𝒫AFinyxkA0y*<=sup0*<
29 xrltso <Or*
30 29 a1i φ<Or*
31 0xr 0*
32 supsn <Or*0*sup0*<=0
33 30 31 32 sylancl φsup0*<=0
34 6 28 33 3eqtrd φsum^kA0=0